| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplgr0 | Structured version Visualization version GIF version | ||
| Description: The null graph (with no vertices and no edges) represented by the empty set is a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgr0 | ⊢ ∅ ∈ ComplGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4476 | . . 3 ⊢ ∀𝑣 ∈ ∅ 𝑣 ∈ (UnivVtx‘∅) | |
| 2 | vtxval0 28966 | . . . 4 ⊢ (Vtx‘∅) = ∅ | |
| 3 | 2 | raleqi 3297 | . . 3 ⊢ (∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅) ↔ ∀𝑣 ∈ ∅ 𝑣 ∈ (UnivVtx‘∅)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅) |
| 5 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 6 | eqid 2729 | . . . 4 ⊢ (Vtx‘∅) = (Vtx‘∅) | |
| 7 | 6 | iscplgr 29342 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅))) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ (∅ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅)) |
| 9 | 4, 8 | mpbir 231 | 1 ⊢ ∅ ∈ ComplGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∅c0 4296 ‘cfv 6511 Vtxcvtx 28923 UnivVtxcuvtx 29312 ComplGraphccplgr 29336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-vtx 28925 df-uvtx 29313 df-cplgr 29338 |
| This theorem is referenced by: cusgr0 29353 |
| Copyright terms: Public domain | W3C validator |