| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplgr0 | Structured version Visualization version GIF version | ||
| Description: The null graph (with no vertices and no edges) represented by the empty set is a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgr0 | ⊢ ∅ ∈ ComplGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4479 | . . 3 ⊢ ∀𝑣 ∈ ∅ 𝑣 ∈ (UnivVtx‘∅) | |
| 2 | vtxval0 28973 | . . . 4 ⊢ (Vtx‘∅) = ∅ | |
| 3 | 2 | raleqi 3299 | . . 3 ⊢ (∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅) ↔ ∀𝑣 ∈ ∅ 𝑣 ∈ (UnivVtx‘∅)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅) |
| 5 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 6 | eqid 2730 | . . . 4 ⊢ (Vtx‘∅) = (Vtx‘∅) | |
| 7 | 6 | iscplgr 29349 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅))) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ (∅ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅)) |
| 9 | 4, 8 | mpbir 231 | 1 ⊢ ∅ ∈ ComplGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∅c0 4299 ‘cfv 6514 Vtxcvtx 28930 UnivVtxcuvtx 29319 ComplGraphccplgr 29343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-vtx 28932 df-uvtx 29320 df-cplgr 29345 |
| This theorem is referenced by: cusgr0 29360 |
| Copyright terms: Public domain | W3C validator |