| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplgr0 | Structured version Visualization version GIF version | ||
| Description: The null graph (with no vertices and no edges) represented by the empty set is a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cplgr0 | ⊢ ∅ ∈ ComplGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ral0 4463 | . . 3 ⊢ ∀𝑣 ∈ ∅ 𝑣 ∈ (UnivVtx‘∅) | |
| 2 | vtxval0 29015 | . . . 4 ⊢ (Vtx‘∅) = ∅ | |
| 3 | 2 | raleqi 3290 | . . 3 ⊢ (∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅) ↔ ∀𝑣 ∈ ∅ 𝑣 ∈ (UnivVtx‘∅)) |
| 4 | 1, 3 | mpbir 231 | . 2 ⊢ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅) |
| 5 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 6 | eqid 2731 | . . . 4 ⊢ (Vtx‘∅) = (Vtx‘∅) | |
| 7 | 6 | iscplgr 29391 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅))) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ (∅ ∈ ComplGraph ↔ ∀𝑣 ∈ (Vtx‘∅)𝑣 ∈ (UnivVtx‘∅)) |
| 9 | 4, 8 | mpbir 231 | 1 ⊢ ∅ ∈ ComplGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∅c0 4283 ‘cfv 6481 Vtxcvtx 28972 UnivVtxcuvtx 29361 ComplGraphccplgr 29385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 df-vtx 28974 df-uvtx 29362 df-cplgr 29387 |
| This theorem is referenced by: cusgr0 29402 |
| Copyright terms: Public domain | W3C validator |