Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = 𝐵 → (𝐹‘𝑎) = (𝐹‘𝐵)) |
2 | 1 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = 𝐵 → ((𝐹‘𝑎) ⊆ (𝐹‘𝐵) ↔ (𝐹‘𝐵) ⊆ (𝐹‘𝐵))) |
3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝐵 → ((𝜑 → (𝐹‘𝑎) ⊆ (𝐹‘𝐵)) ↔ (𝜑 → (𝐹‘𝐵) ⊆ (𝐹‘𝐵)))) |
4 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) |
5 | 4 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝐹‘𝑎) ⊆ (𝐹‘𝐵) ↔ (𝐹‘𝑏) ⊆ (𝐹‘𝐵))) |
6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝑏 → ((𝜑 → (𝐹‘𝑎) ⊆ (𝐹‘𝐵)) ↔ (𝜑 → (𝐹‘𝑏) ⊆ (𝐹‘𝐵)))) |
7 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = suc 𝑏 → (𝐹‘𝑎) = (𝐹‘suc 𝑏)) |
8 | 7 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = suc 𝑏 → ((𝐹‘𝑎) ⊆ (𝐹‘𝐵) ↔ (𝐹‘suc 𝑏) ⊆ (𝐹‘𝐵))) |
9 | 8 | imbi2d 340 |
. . 3
⊢ (𝑎 = suc 𝑏 → ((𝜑 → (𝐹‘𝑎) ⊆ (𝐹‘𝐵)) ↔ (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹‘𝐵)))) |
10 | | fveq2 6756 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) |
11 | 10 | sseq1d 3948 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) ⊆ (𝐹‘𝐵) ↔ (𝐹‘𝐴) ⊆ (𝐹‘𝐵))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝐴 → ((𝜑 → (𝐹‘𝑎) ⊆ (𝐹‘𝐵)) ↔ (𝜑 → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)))) |
13 | | ssid 3939 |
. . . 4
⊢ (𝐹‘𝐵) ⊆ (𝐹‘𝐵) |
14 | 13 | 2a1i 12 |
. . 3
⊢ (𝐵 ∈ ω → (𝜑 → (𝐹‘𝐵) ⊆ (𝐹‘𝐵))) |
15 | | isf32lem.b |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
16 | | suceq 6316 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏) |
17 | 16 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑏)) |
18 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑥 = 𝑏 → (𝐹‘𝑥) = (𝐹‘𝑏)) |
19 | 17, 18 | sseq12d 3950 |
. . . . . . . 8
⊢ (𝑥 = 𝑏 → ((𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) ↔ (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏))) |
20 | 19 | rspcv 3547 |
. . . . . . 7
⊢ (𝑏 ∈ ω →
(∀𝑥 ∈ ω
(𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥) → (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏))) |
21 | 15, 20 | syl5 34 |
. . . . . 6
⊢ (𝑏 ∈ ω → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏))) |
22 | 21 | ad2antrr 722 |
. . . . 5
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏))) |
23 | | sstr2 3924 |
. . . . 5
⊢ ((𝐹‘suc 𝑏) ⊆ (𝐹‘𝑏) → ((𝐹‘𝑏) ⊆ (𝐹‘𝐵) → (𝐹‘suc 𝑏) ⊆ (𝐹‘𝐵))) |
24 | 22, 23 | syl6 35 |
. . . 4
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → (𝜑 → ((𝐹‘𝑏) ⊆ (𝐹‘𝐵) → (𝐹‘suc 𝑏) ⊆ (𝐹‘𝐵)))) |
25 | 24 | a2d 29 |
. . 3
⊢ (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝑏) → ((𝜑 → (𝐹‘𝑏) ⊆ (𝐹‘𝐵)) → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹‘𝐵)))) |
26 | 3, 6, 9, 12, 14, 25 | findsg 7720 |
. 2
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (𝜑 → (𝐹‘𝐴) ⊆ (𝐹‘𝐵))) |
27 | 26 | impr 454 |
1
⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵 ⊆ 𝐴 ∧ 𝜑)) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) |