MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem1 Structured version   Visualization version   GIF version

Theorem isf32lem1 9428
Description: Lemma for isfin3-2 9442. Derive weak ordering property. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6375 . . . . 5 (𝑎 = 𝐵 → (𝐹𝑎) = (𝐹𝐵))
21sseq1d 3792 . . . 4 (𝑎 = 𝐵 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹𝐵) ⊆ (𝐹𝐵)))
32imbi2d 331 . . 3 (𝑎 = 𝐵 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹𝐵) ⊆ (𝐹𝐵))))
4 fveq2 6375 . . . . 5 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54sseq1d 3792 . . . 4 (𝑎 = 𝑏 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹𝑏) ⊆ (𝐹𝐵)))
65imbi2d 331 . . 3 (𝑎 = 𝑏 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹𝑏) ⊆ (𝐹𝐵))))
7 fveq2 6375 . . . . 5 (𝑎 = suc 𝑏 → (𝐹𝑎) = (𝐹‘suc 𝑏))
87sseq1d 3792 . . . 4 (𝑎 = suc 𝑏 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹‘suc 𝑏) ⊆ (𝐹𝐵)))
98imbi2d 331 . . 3 (𝑎 = suc 𝑏 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵))))
10 fveq2 6375 . . . . 5 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
1110sseq1d 3792 . . . 4 (𝑎 = 𝐴 → ((𝐹𝑎) ⊆ (𝐹𝐵) ↔ (𝐹𝐴) ⊆ (𝐹𝐵)))
1211imbi2d 331 . . 3 (𝑎 = 𝐴 → ((𝜑 → (𝐹𝑎) ⊆ (𝐹𝐵)) ↔ (𝜑 → (𝐹𝐴) ⊆ (𝐹𝐵))))
13 ssid 3783 . . . 4 (𝐹𝐵) ⊆ (𝐹𝐵)
14132a1i 12 . . 3 (𝐵 ∈ ω → (𝜑 → (𝐹𝐵) ⊆ (𝐹𝐵)))
15 isf32lem.b . . . . . . 7 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
16 suceq 5973 . . . . . . . . . 10 (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏)
1716fveq2d 6379 . . . . . . . . 9 (𝑥 = 𝑏 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑏))
18 fveq2 6375 . . . . . . . . 9 (𝑥 = 𝑏 → (𝐹𝑥) = (𝐹𝑏))
1917, 18sseq12d 3794 . . . . . . . 8 (𝑥 = 𝑏 → ((𝐹‘suc 𝑥) ⊆ (𝐹𝑥) ↔ (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
2019rspcv 3457 . . . . . . 7 (𝑏 ∈ ω → (∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥) → (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
2115, 20syl5 34 . . . . . 6 (𝑏 ∈ ω → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
2221ad2antrr 717 . . . . 5 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝑏)))
23 sstr2 3768 . . . . 5 ((𝐹‘suc 𝑏) ⊆ (𝐹𝑏) → ((𝐹𝑏) ⊆ (𝐹𝐵) → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵)))
2422, 23syl6 35 . . . 4 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → (𝜑 → ((𝐹𝑏) ⊆ (𝐹𝐵) → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵))))
2524a2d 29 . . 3 (((𝑏 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑏) → ((𝜑 → (𝐹𝑏) ⊆ (𝐹𝐵)) → (𝜑 → (𝐹‘suc 𝑏) ⊆ (𝐹𝐵))))
263, 6, 9, 12, 14, 25findsg 7291 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → (𝜑 → (𝐹𝐴) ⊆ (𝐹𝐵)))
2726impr 446 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wral 3055  wss 3732  𝒫 cpw 4315   cint 4633  ran crn 5278  suc csuc 5910  wf 6064  cfv 6068  ωcom 7263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-tr 4912  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fv 6076  df-om 7264
This theorem is referenced by:  isf32lem2  9429  isf32lem3  9430
  Copyright terms: Public domain W3C validator