Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphflem Structured version   Visualization version   GIF version

Theorem mhphflem 40207
Description: Lemma for mhphf 40208. Add several multiples of 𝐿 together, in a case where the total amount of multiplies is 𝑁. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
mhphflem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhphflem.h 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhphflem.k 𝐵 = (Base‘𝐺)
mhphflem.e · = (.g𝐺)
mhphflem.i (𝜑𝐼𝑉)
mhphflem.g (𝜑𝐺 ∈ Mnd)
mhphflem.l (𝜑𝐿𝐵)
mhphflem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhphflem ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Distinct variable groups:   𝑣, ·   𝐷,𝑔   𝑣,𝐻   ,𝐼   𝑣,𝐼   𝑣,𝐿   𝑔,𝑁   𝑔,𝑎   ,𝑎   𝑣,𝑎   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑔,,𝑎)   𝐵(𝑣,𝑔,,𝑎)   𝐷(𝑣,,𝑎)   · (𝑔,,𝑎)   𝐺(𝑣,𝑔,,𝑎)   𝐻(𝑔,,𝑎)   𝐼(𝑔,𝑎)   𝐿(𝑔,,𝑎)   𝑁(𝑣,,𝑎)   𝑉(𝑣,𝑔,,𝑎)

Proof of Theorem mhphflem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0subm 20565 . . . 4 0 ∈ (SubMnd‘ℂfld)
2 eqid 2738 . . . . 5 (ℂflds0) = (ℂflds0)
32submbas 18368 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
41, 3ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
5 cnfld0 20534 . . . . 5 0 = (0g‘ℂfld)
62, 5subm0 18369 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
71, 6ax-mp 5 . . 3 0 = (0g‘(ℂflds0))
8 cnring 20532 . . . . . 6 fld ∈ Ring
9 ringcmn 19735 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
108, 9ax-mp 5 . . . . 5 fld ∈ CMnd
112submcmn 19354 . . . . 5 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
1210, 1, 11mp2an 688 . . . 4 (ℂflds0) ∈ CMnd
1312a1i 11 . . 3 ((𝜑𝑎𝐻) → (ℂflds0) ∈ CMnd)
14 mhphflem.g . . . 4 (𝜑𝐺 ∈ Mnd)
1514adantr 480 . . 3 ((𝜑𝑎𝐻) → 𝐺 ∈ Mnd)
16 mhphflem.i . . . 4 (𝜑𝐼𝑉)
1716adantr 480 . . 3 ((𝜑𝑎𝐻) → 𝐼𝑉)
18 mhphflem.k . . . 4 𝐵 = (Base‘𝐺)
19 cnfldadd 20515 . . . . . 6 + = (+g‘ℂfld)
202, 19ressplusg 16926 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g‘(ℂflds0)))
211, 20ax-mp 5 . . . 4 + = (+g‘(ℂflds0))
22 eqid 2738 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2738 . . . 4 (0g𝐺) = (0g𝐺)
242submmnd 18367 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
251, 24mp1i 13 . . . 4 ((𝜑𝑎𝐻) → (ℂflds0) ∈ Mnd)
2614ad2antrr 722 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
27 simpr 484 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
28 mhphflem.l . . . . . . 7 (𝜑𝐿𝐵)
2928ad2antrr 722 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
30 mhphflem.e . . . . . . 7 · = (.g𝐺)
3118, 30mulgnn0cl 18635 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝐿𝐵) → (𝑛 · 𝐿) ∈ 𝐵)
3226, 27, 29, 31syl3anc 1369 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝐿) ∈ 𝐵)
3332fmpttd 6971 . . . 4 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)):ℕ0𝐵)
3414ad2antrr 722 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐺 ∈ Mnd)
35 simprl 767 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
36 simprr 769 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3728ad2antrr 722 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐿𝐵)
3818, 30, 22mulgnn0dir 18648 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝐿𝐵)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
3934, 35, 36, 37, 38syl13anc 1370 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
40 eqid 2738 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) = (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))
41 oveq1 7262 . . . . . 6 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 𝐿) = ((𝑥 + 𝑦) · 𝐿))
42 nn0addcl 12198 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
4342adantl 481 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
44 ovexd 7290 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) ∈ V)
4540, 41, 43, 44fvmptd3 6880 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 𝐿))
46 oveq1 7262 . . . . . . 7 (𝑛 = 𝑥 → (𝑛 · 𝐿) = (𝑥 · 𝐿))
47 ovexd 7290 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 · 𝐿) ∈ V)
4840, 46, 35, 47fvmptd3 6880 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥) = (𝑥 · 𝐿))
49 oveq1 7262 . . . . . . 7 (𝑛 = 𝑦 → (𝑛 · 𝐿) = (𝑦 · 𝐿))
50 ovexd 7290 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑦 · 𝐿) ∈ V)
5140, 49, 36, 50fvmptd3 6880 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦) = (𝑦 · 𝐿))
5248, 51oveq12d 7273 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
5339, 45, 523eqtr4d 2788 . . . 4 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)))
54 oveq1 7262 . . . . . 6 (𝑛 = 0 → (𝑛 · 𝐿) = (0 · 𝐿))
55 0nn0 12178 . . . . . . 7 0 ∈ ℕ0
5655a1i 11 . . . . . 6 ((𝜑𝑎𝐻) → 0 ∈ ℕ0)
57 ovexd 7290 . . . . . 6 ((𝜑𝑎𝐻) → (0 · 𝐿) ∈ V)
5840, 54, 56, 57fvmptd3 6880 . . . . 5 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0 · 𝐿))
5928adantr 480 . . . . . 6 ((𝜑𝑎𝐻) → 𝐿𝐵)
6018, 23, 30mulg0 18622 . . . . . 6 (𝐿𝐵 → (0 · 𝐿) = (0g𝐺))
6159, 60syl 17 . . . . 5 ((𝜑𝑎𝐻) → (0 · 𝐿) = (0g𝐺))
6258, 61eqtrd 2778 . . . 4 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0g𝐺))
634, 18, 21, 22, 7, 23, 25, 15, 33, 53, 62ismhmd 40164 . . 3 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) ∈ ((ℂflds0) MndHom 𝐺))
64 elrabi 3611 . . . . . . 7 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝐷)
65 mhphflem.h . . . . . . 7 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
6664, 65eleq2s 2857 . . . . . 6 (𝑎𝐻𝑎𝐷)
6766adantl 481 . . . . 5 ((𝜑𝑎𝐻) → 𝑎𝐷)
68 mhphflem.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6968psrbagf 21031 . . . . 5 (𝑎𝐷𝑎:𝐼⟶ℕ0)
7067, 69syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎:𝐼⟶ℕ0)
7170ffvelrnda 6943 . . 3 (((𝜑𝑎𝐻) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
7270feqmptd 6819 . . . 4 ((𝜑𝑎𝐻) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
7368psrbagfsupp 21033 . . . . 5 (𝑎𝐷𝑎 finSupp 0)
7467, 73syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎 finSupp 0)
7572, 74eqbrtrrd 5094 . . 3 ((𝜑𝑎𝐻) → (𝑣𝐼 ↦ (𝑎𝑣)) finSupp 0)
76 oveq1 7262 . . 3 (𝑛 = (𝑎𝑣) → (𝑛 · 𝐿) = ((𝑎𝑣) · 𝐿))
77 oveq1 7262 . . 3 (𝑛 = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) → (𝑛 · 𝐿) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
784, 7, 13, 15, 17, 63, 71, 75, 76, 77gsummhm2 19455 . 2 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
7972oveq2d 7271 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))))
80 oveq2 7263 . . . . . . . 8 (𝑔 = 𝑎 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑎))
8180eqeq1d 2740 . . . . . . 7 (𝑔 = 𝑎 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑎) = 𝑁))
8281, 65elrab2 3620 . . . . . 6 (𝑎𝐻 ↔ (𝑎𝐷 ∧ ((ℂflds0) Σg 𝑎) = 𝑁))
8382simprbi 496 . . . . 5 (𝑎𝐻 → ((ℂflds0) Σg 𝑎) = 𝑁)
8483adantl 481 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = 𝑁)
8579, 84eqtr3d 2780 . . 3 ((𝜑𝑎𝐻) → ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) = 𝑁)
8685oveq1d 7270 . 2 ((𝜑𝑎𝐻) → (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿) = (𝑁 · 𝐿))
8778, 86eqtrd 2778 1 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422   class class class wbr 5070  cmpt 5153  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  0cc0 10802   + caddc 10805  cn 11903  0cn0 12163  Basecbs 16840  s cress 16867  +gcplusg 16888  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300  SubMndcsubmnd 18344  .gcmg 18615  CMndccmn 19301  Ringcrg 19698  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-cnfld 20511
This theorem is referenced by:  mhphf  40208
  Copyright terms: Public domain W3C validator