| Step | Hyp | Ref
| Expression |
| 1 | | nn0subm 21390 |
. . . 4
⊢
ℕ0 ∈
(SubMnd‘ℂfld) |
| 2 | | eqid 2735 |
. . . . 5
⊢
(ℂfld ↾s ℕ0) =
(ℂfld ↾s
ℕ0) |
| 3 | 2 | submbas 18792 |
. . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
ℕ0 = (Base‘(ℂfld ↾s
ℕ0))) |
| 4 | 1, 3 | ax-mp 5 |
. . 3
⊢
ℕ0 = (Base‘(ℂfld
↾s ℕ0)) |
| 5 | | cnfld0 21355 |
. . . . 5
⊢ 0 =
(0g‘ℂfld) |
| 6 | 2, 5 | subm0 18793 |
. . . 4
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
0 = (0g‘(ℂfld ↾s
ℕ0))) |
| 7 | 1, 6 | ax-mp 5 |
. . 3
⊢ 0 =
(0g‘(ℂfld ↾s
ℕ0)) |
| 8 | | cnring 21353 |
. . . . . 6
⊢
ℂfld ∈ Ring |
| 9 | | ringcmn 20242 |
. . . . . 6
⊢
(ℂfld ∈ Ring → ℂfld ∈
CMnd) |
| 10 | 8, 9 | ax-mp 5 |
. . . . 5
⊢
ℂfld ∈ CMnd |
| 11 | 2 | submcmn 19819 |
. . . . 5
⊢
((ℂfld ∈ CMnd ∧ ℕ0 ∈
(SubMnd‘ℂfld)) → (ℂfld
↾s ℕ0) ∈ CMnd) |
| 12 | 10, 1, 11 | mp2an 692 |
. . . 4
⊢
(ℂfld ↾s ℕ0) ∈
CMnd |
| 13 | 12 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (ℂfld
↾s ℕ0) ∈ CMnd) |
| 14 | | mhphflem.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 15 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝐺 ∈ Mnd) |
| 16 | | mhphflem.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 17 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝐼 ∈ 𝑉) |
| 18 | | mhphflem.k |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
| 19 | | cnfldadd 21321 |
. . . . . 6
⊢ + =
(+g‘ℂfld) |
| 20 | 2, 19 | ressplusg 17305 |
. . . . 5
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
+ = (+g‘(ℂfld ↾s
ℕ0))) |
| 21 | 1, 20 | ax-mp 5 |
. . . 4
⊢ + =
(+g‘(ℂfld ↾s
ℕ0)) |
| 22 | | eqid 2735 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 23 | | eqid 2735 |
. . . 4
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 24 | 2 | submmnd 18791 |
. . . . 5
⊢
(ℕ0 ∈ (SubMnd‘ℂfld) →
(ℂfld ↾s ℕ0) ∈
Mnd) |
| 25 | 1, 24 | mp1i 13 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (ℂfld
↾s ℕ0) ∈ Mnd) |
| 26 | | mhphflem.e |
. . . . . 6
⊢ · =
(.g‘𝐺) |
| 27 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd) |
| 28 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 29 | | mhphflem.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ 𝐵) |
| 30 | 29 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐿 ∈ 𝐵) |
| 31 | 18, 26, 27, 28, 30 | mulgnn0cld 19078 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝐿) ∈ 𝐵) |
| 32 | 31 | fmpttd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)):ℕ0⟶𝐵) |
| 33 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ 𝐺 ∈
Mnd) |
| 34 | | simprl 770 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ 𝑥 ∈
ℕ0) |
| 35 | | simprr 772 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ 𝑦 ∈
ℕ0) |
| 36 | 29 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ 𝐿 ∈ 𝐵) |
| 37 | 18, 26, 22 | mulgnn0dir 19087 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0 ∧ 𝐿
∈ 𝐵)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g‘𝐺)(𝑦 · 𝐿))) |
| 38 | 33, 34, 35, 36, 37 | syl13anc 1374 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g‘𝐺)(𝑦 · 𝐿))) |
| 39 | | eqid 2735 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝑛 · 𝐿)) = (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) |
| 40 | | oveq1 7412 |
. . . . . 6
⊢ (𝑛 = (𝑥 + 𝑦) → (𝑛 · 𝐿) = ((𝑥 + 𝑦) · 𝐿)) |
| 41 | | nn0addcl 12536 |
. . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑥 + 𝑦) ∈
ℕ0) |
| 42 | 41 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ (𝑥 + 𝑦) ∈
ℕ0) |
| 43 | | ovexd 7440 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ ((𝑥 + 𝑦) · 𝐿) ∈ V) |
| 44 | 39, 40, 42, 43 | fvmptd3 7009 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ ((𝑛 ∈
ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 𝐿)) |
| 45 | | oveq1 7412 |
. . . . . . 7
⊢ (𝑛 = 𝑥 → (𝑛 · 𝐿) = (𝑥 · 𝐿)) |
| 46 | | ovexd 7440 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ (𝑥 · 𝐿) ∈ V) |
| 47 | 39, 45, 34, 46 | fvmptd3 7009 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ ((𝑛 ∈
ℕ0 ↦ (𝑛 · 𝐿))‘𝑥) = (𝑥 · 𝐿)) |
| 48 | | oveq1 7412 |
. . . . . . 7
⊢ (𝑛 = 𝑦 → (𝑛 · 𝐿) = (𝑦 · 𝐿)) |
| 49 | | ovexd 7440 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ (𝑦 · 𝐿) ∈ V) |
| 50 | 39, 48, 35, 49 | fvmptd3 7009 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ ((𝑛 ∈
ℕ0 ↦ (𝑛 · 𝐿))‘𝑦) = (𝑦 · 𝐿)) |
| 51 | 47, 50 | oveq12d 7423 |
. . . . 5
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ (((𝑛 ∈
ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g‘𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)) = ((𝑥 · 𝐿)(+g‘𝐺)(𝑦 · 𝐿))) |
| 52 | 38, 44, 51 | 3eqtr4d 2780 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0))
→ ((𝑛 ∈
ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g‘𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦))) |
| 53 | | oveq1 7412 |
. . . . . 6
⊢ (𝑛 = 0 → (𝑛 · 𝐿) = (0 · 𝐿)) |
| 54 | | 0nn0 12516 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
| 55 | 54 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 0 ∈
ℕ0) |
| 56 | | ovexd 7440 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (0 · 𝐿) ∈ V) |
| 57 | 39, 53, 55, 56 | fvmptd3 7009 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0 · 𝐿)) |
| 58 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝐿 ∈ 𝐵) |
| 59 | 18, 23, 26 | mulg0 19057 |
. . . . . 6
⊢ (𝐿 ∈ 𝐵 → (0 · 𝐿) = (0g‘𝐺)) |
| 60 | 58, 59 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (0 · 𝐿) = (0g‘𝐺)) |
| 61 | 57, 60 | eqtrd 2770 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0g‘𝐺)) |
| 62 | 4, 18, 21, 22, 7, 23, 25, 15, 32, 52, 61 | ismhmd 18764 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) ∈ ((ℂfld
↾s ℕ0) MndHom 𝐺)) |
| 63 | | elrabi 3666 |
. . . . . . 7
⊢ (𝑎 ∈ {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} → 𝑎 ∈ 𝐷) |
| 64 | | mhphflem.h |
. . . . . . 7
⊢ 𝐻 = {𝑔 ∈ 𝐷 ∣ ((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁} |
| 65 | 63, 64 | eleq2s 2852 |
. . . . . 6
⊢ (𝑎 ∈ 𝐻 → 𝑎 ∈ 𝐷) |
| 66 | 65 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 ∈ 𝐷) |
| 67 | | mhphflem.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 68 | 67 | psrbagf 21878 |
. . . . 5
⊢ (𝑎 ∈ 𝐷 → 𝑎:𝐼⟶ℕ0) |
| 69 | 66, 68 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎:𝐼⟶ℕ0) |
| 70 | 69 | ffvelcdmda 7074 |
. . 3
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐻) ∧ 𝑣 ∈ 𝐼) → (𝑎‘𝑣) ∈
ℕ0) |
| 71 | 69 | feqmptd 6947 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 = (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) |
| 72 | 67 | psrbagfsupp 21879 |
. . . . 5
⊢ (𝑎 ∈ 𝐷 → 𝑎 finSupp 0) |
| 73 | 66, 72 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → 𝑎 finSupp 0) |
| 74 | 71, 73 | eqbrtrrd 5143 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)) finSupp 0) |
| 75 | | oveq1 7412 |
. . 3
⊢ (𝑛 = (𝑎‘𝑣) → (𝑛 · 𝐿) = ((𝑎‘𝑣) · 𝐿)) |
| 76 | | oveq1 7412 |
. . 3
⊢ (𝑛 = ((ℂfld
↾s ℕ0) Σg (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) → (𝑛 · 𝐿) = (((ℂfld
↾s ℕ0) Σg (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) · 𝐿)) |
| 77 | 4, 7, 13, 15, 17, 62, 70, 74, 75, 76 | gsummhm2 19920 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝐺 Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) · 𝐿))) = (((ℂfld
↾s ℕ0) Σg (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) · 𝐿)) |
| 78 | 71 | oveq2d 7421 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((ℂfld
↾s ℕ0) Σg 𝑎) = ((ℂfld
↾s ℕ0) Σg (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣)))) |
| 79 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑔 = 𝑎 → ((ℂfld
↾s ℕ0) Σg 𝑔) = ((ℂfld
↾s ℕ0) Σg 𝑎)) |
| 80 | 79 | eqeq1d 2737 |
. . . . . . 7
⊢ (𝑔 = 𝑎 → (((ℂfld
↾s ℕ0) Σg 𝑔) = 𝑁 ↔ ((ℂfld
↾s ℕ0) Σg 𝑎) = 𝑁)) |
| 81 | 80, 64 | elrab2 3674 |
. . . . . 6
⊢ (𝑎 ∈ 𝐻 ↔ (𝑎 ∈ 𝐷 ∧ ((ℂfld
↾s ℕ0) Σg 𝑎) = 𝑁)) |
| 82 | 81 | simprbi 496 |
. . . . 5
⊢ (𝑎 ∈ 𝐻 → ((ℂfld
↾s ℕ0) Σg 𝑎) = 𝑁) |
| 83 | 82 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((ℂfld
↾s ℕ0) Σg 𝑎) = 𝑁) |
| 84 | 78, 83 | eqtr3d 2772 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → ((ℂfld
↾s ℕ0) Σg (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) = 𝑁) |
| 85 | 84 | oveq1d 7420 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (((ℂfld
↾s ℕ0) Σg (𝑣 ∈ 𝐼 ↦ (𝑎‘𝑣))) · 𝐿) = (𝑁 · 𝐿)) |
| 86 | 77, 85 | eqtrd 2770 |
1
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐻) → (𝐺 Σg (𝑣 ∈ 𝐼 ↦ ((𝑎‘𝑣) · 𝐿))) = (𝑁 · 𝐿)) |