Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphflem Structured version   Visualization version   GIF version

Theorem mhphflem 39789
Description: Lemma for mhphf 39790. Add several multiples of 𝐿 together, in a case where the total amount of multiplies is 𝑁. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
mhphflem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhphflem.h 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhphflem.k 𝐵 = (Base‘𝐺)
mhphflem.e · = (.g𝐺)
mhphflem.i (𝜑𝐼𝑉)
mhphflem.g (𝜑𝐺 ∈ Mnd)
mhphflem.l (𝜑𝐿𝐵)
mhphflem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhphflem ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Distinct variable groups:   𝑣, ·   𝐷,𝑔   𝑣,𝐻   ,𝐼   𝑣,𝐼   𝑣,𝐿   𝑔,𝑁   𝑔,𝑎   ,𝑎   𝑣,𝑎   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑔,,𝑎)   𝐵(𝑣,𝑔,,𝑎)   𝐷(𝑣,,𝑎)   · (𝑔,,𝑎)   𝐺(𝑣,𝑔,,𝑎)   𝐻(𝑔,,𝑎)   𝐼(𝑔,𝑎)   𝐿(𝑔,,𝑎)   𝑁(𝑣,,𝑎)   𝑉(𝑣,𝑔,,𝑎)

Proof of Theorem mhphflem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0subm 20221 . . . 4 0 ∈ (SubMnd‘ℂfld)
2 eqid 2758 . . . . 5 (ℂflds0) = (ℂflds0)
32submbas 18045 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
41, 3ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
5 cnfld0 20190 . . . . 5 0 = (0g‘ℂfld)
62, 5subm0 18046 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
71, 6ax-mp 5 . . 3 0 = (0g‘(ℂflds0))
8 cnring 20188 . . . . . 6 fld ∈ Ring
9 ringcmn 19402 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
108, 9ax-mp 5 . . . . 5 fld ∈ CMnd
112submcmn 19026 . . . . 5 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
1210, 1, 11mp2an 691 . . . 4 (ℂflds0) ∈ CMnd
1312a1i 11 . . 3 ((𝜑𝑎𝐻) → (ℂflds0) ∈ CMnd)
14 mhphflem.g . . . 4 (𝜑𝐺 ∈ Mnd)
1514adantr 484 . . 3 ((𝜑𝑎𝐻) → 𝐺 ∈ Mnd)
16 mhphflem.i . . . 4 (𝜑𝐼𝑉)
1716adantr 484 . . 3 ((𝜑𝑎𝐻) → 𝐼𝑉)
18 mhphflem.k . . . 4 𝐵 = (Base‘𝐺)
19 cnfldadd 20171 . . . . . 6 + = (+g‘ℂfld)
202, 19ressplusg 16670 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g‘(ℂflds0)))
211, 20ax-mp 5 . . . 4 + = (+g‘(ℂflds0))
22 eqid 2758 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2758 . . . 4 (0g𝐺) = (0g𝐺)
242submmnd 18044 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
251, 24mp1i 13 . . . 4 ((𝜑𝑎𝐻) → (ℂflds0) ∈ Mnd)
2614ad2antrr 725 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
27 simpr 488 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
28 mhphflem.l . . . . . . 7 (𝜑𝐿𝐵)
2928ad2antrr 725 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
30 mhphflem.e . . . . . . 7 · = (.g𝐺)
3118, 30mulgnn0cl 18311 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑛 ∈ ℕ0𝐿𝐵) → (𝑛 · 𝐿) ∈ 𝐵)
3226, 27, 29, 31syl3anc 1368 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝐿) ∈ 𝐵)
3332fmpttd 6870 . . . 4 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)):ℕ0𝐵)
3414ad2antrr 725 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐺 ∈ Mnd)
35 simprl 770 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
36 simprr 772 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3728ad2antrr 725 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐿𝐵)
3818, 30, 22mulgnn0dir 18324 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝐿𝐵)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
3934, 35, 36, 37, 38syl13anc 1369 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
40 eqid 2758 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) = (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))
41 oveq1 7157 . . . . . 6 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 𝐿) = ((𝑥 + 𝑦) · 𝐿))
42 nn0addcl 11969 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
4342adantl 485 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
44 ovexd 7185 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) ∈ V)
4540, 41, 43, 44fvmptd3 6782 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 𝐿))
46 oveq1 7157 . . . . . . 7 (𝑛 = 𝑥 → (𝑛 · 𝐿) = (𝑥 · 𝐿))
47 ovexd 7185 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 · 𝐿) ∈ V)
4840, 46, 35, 47fvmptd3 6782 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥) = (𝑥 · 𝐿))
49 oveq1 7157 . . . . . . 7 (𝑛 = 𝑦 → (𝑛 · 𝐿) = (𝑦 · 𝐿))
50 ovexd 7185 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑦 · 𝐿) ∈ V)
5140, 49, 36, 50fvmptd3 6782 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦) = (𝑦 · 𝐿))
5248, 51oveq12d 7168 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
5339, 45, 523eqtr4d 2803 . . . 4 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)))
54 oveq1 7157 . . . . . 6 (𝑛 = 0 → (𝑛 · 𝐿) = (0 · 𝐿))
55 0nn0 11949 . . . . . . 7 0 ∈ ℕ0
5655a1i 11 . . . . . 6 ((𝜑𝑎𝐻) → 0 ∈ ℕ0)
57 ovexd 7185 . . . . . 6 ((𝜑𝑎𝐻) → (0 · 𝐿) ∈ V)
5840, 54, 56, 57fvmptd3 6782 . . . . 5 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0 · 𝐿))
5928adantr 484 . . . . . 6 ((𝜑𝑎𝐻) → 𝐿𝐵)
6018, 23, 30mulg0 18298 . . . . . 6 (𝐿𝐵 → (0 · 𝐿) = (0g𝐺))
6159, 60syl 17 . . . . 5 ((𝜑𝑎𝐻) → (0 · 𝐿) = (0g𝐺))
6258, 61eqtrd 2793 . . . 4 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0g𝐺))
634, 18, 21, 22, 7, 23, 25, 15, 33, 53, 62ismhmd 39745 . . 3 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) ∈ ((ℂflds0) MndHom 𝐺))
64 elrabi 3596 . . . . . . 7 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝐷)
65 mhphflem.h . . . . . . 7 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
6664, 65eleq2s 2870 . . . . . 6 (𝑎𝐻𝑎𝐷)
6766adantl 485 . . . . 5 ((𝜑𝑎𝐻) → 𝑎𝐷)
68 mhphflem.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6968psrbagf 20680 . . . . 5 (𝑎𝐷𝑎:𝐼⟶ℕ0)
7067, 69syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎:𝐼⟶ℕ0)
7170ffvelrnda 6842 . . 3 (((𝜑𝑎𝐻) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
7270feqmptd 6721 . . . 4 ((𝜑𝑎𝐻) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
7368psrbagfsupp 20682 . . . . 5 (𝑎𝐷𝑎 finSupp 0)
7467, 73syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎 finSupp 0)
7572, 74eqbrtrrd 5056 . . 3 ((𝜑𝑎𝐻) → (𝑣𝐼 ↦ (𝑎𝑣)) finSupp 0)
76 oveq1 7157 . . 3 (𝑛 = (𝑎𝑣) → (𝑛 · 𝐿) = ((𝑎𝑣) · 𝐿))
77 oveq1 7157 . . 3 (𝑛 = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) → (𝑛 · 𝐿) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
784, 7, 13, 15, 17, 63, 71, 75, 76, 77gsummhm2 19127 . 2 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
7972oveq2d 7166 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))))
80 oveq2 7158 . . . . . . . 8 (𝑔 = 𝑎 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑎))
8180eqeq1d 2760 . . . . . . 7 (𝑔 = 𝑎 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑎) = 𝑁))
8281, 65elrab2 3605 . . . . . 6 (𝑎𝐻 ↔ (𝑎𝐷 ∧ ((ℂflds0) Σg 𝑎) = 𝑁))
8382simprbi 500 . . . . 5 (𝑎𝐻 → ((ℂflds0) Σg 𝑎) = 𝑁)
8483adantl 485 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = 𝑁)
8579, 84eqtr3d 2795 . . 3 ((𝜑𝑎𝐻) → ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) = 𝑁)
8685oveq1d 7165 . 2 ((𝜑𝑎𝐻) → (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿) = (𝑁 · 𝐿))
8778, 86eqtrd 2793 1 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3074  Vcvv 3409   class class class wbr 5032  cmpt 5112  ccnv 5523  cima 5527  wf 6331  cfv 6335  (class class class)co 7150  m cmap 8416  Fincfn 8527   finSupp cfsupp 8866  0cc0 10575   + caddc 10578  cn 11674  0cn0 11934  Basecbs 16541  s cress 16542  +gcplusg 16623  0gc0g 16771   Σg cgsu 16772  Mndcmnd 17977  SubMndcsubmnd 18021  .gcmg 18291  CMndccmn 18973  Ringcrg 19365  fldccnfld 20166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-addf 10654  ax-mulf 10655
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-supp 7836  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-fsupp 8867  df-oi 9007  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-7 11742  df-8 11743  df-9 11744  df-n0 11935  df-z 12021  df-dec 12138  df-uz 12283  df-fz 12940  df-fzo 13083  df-seq 13419  df-hash 13741  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-starv 16638  df-tset 16642  df-ple 16643  df-ds 16645  df-unif 16646  df-0g 16773  df-gsum 16774  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-mhm 18022  df-submnd 18023  df-grp 18172  df-minusg 18173  df-mulg 18292  df-cntz 18514  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-cring 19368  df-cnfld 20167
This theorem is referenced by:  mhphf  39790
  Copyright terms: Public domain W3C validator