Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphflem Structured version   Visualization version   GIF version

Theorem mhphflem 42591
Description: Lemma for mhphf 42592. Add several multiples of 𝐿 together, in a case where the total amount of multiplies is 𝑁. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
mhphflem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhphflem.h 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhphflem.k 𝐵 = (Base‘𝐺)
mhphflem.e · = (.g𝐺)
mhphflem.i (𝜑𝐼𝑉)
mhphflem.g (𝜑𝐺 ∈ Mnd)
mhphflem.l (𝜑𝐿𝐵)
mhphflem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhphflem ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Distinct variable groups:   𝑣, ·   𝐷,𝑔   𝑣,𝐻   ,𝐼   𝑣,𝐼   𝑣,𝐿   𝑔,𝑁   𝑔,𝑎   ,𝑎   𝑣,𝑎   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑔,,𝑎)   𝐵(𝑣,𝑔,,𝑎)   𝐷(𝑣,,𝑎)   · (𝑔,,𝑎)   𝐺(𝑣,𝑔,,𝑎)   𝐻(𝑔,,𝑎)   𝐼(𝑔,𝑎)   𝐿(𝑔,,𝑎)   𝑁(𝑣,,𝑎)   𝑉(𝑣,𝑔,,𝑎)

Proof of Theorem mhphflem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0subm 21346 . . . 4 0 ∈ (SubMnd‘ℂfld)
2 eqid 2730 . . . . 5 (ℂflds0) = (ℂflds0)
32submbas 18748 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
41, 3ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
5 cnfld0 21311 . . . . 5 0 = (0g‘ℂfld)
62, 5subm0 18749 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
71, 6ax-mp 5 . . 3 0 = (0g‘(ℂflds0))
8 cnring 21309 . . . . . 6 fld ∈ Ring
9 ringcmn 20198 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
108, 9ax-mp 5 . . . . 5 fld ∈ CMnd
112submcmn 19775 . . . . 5 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
1210, 1, 11mp2an 692 . . . 4 (ℂflds0) ∈ CMnd
1312a1i 11 . . 3 ((𝜑𝑎𝐻) → (ℂflds0) ∈ CMnd)
14 mhphflem.g . . . 4 (𝜑𝐺 ∈ Mnd)
1514adantr 480 . . 3 ((𝜑𝑎𝐻) → 𝐺 ∈ Mnd)
16 mhphflem.i . . . 4 (𝜑𝐼𝑉)
1716adantr 480 . . 3 ((𝜑𝑎𝐻) → 𝐼𝑉)
18 mhphflem.k . . . 4 𝐵 = (Base‘𝐺)
19 cnfldadd 21277 . . . . . 6 + = (+g‘ℂfld)
202, 19ressplusg 17261 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g‘(ℂflds0)))
211, 20ax-mp 5 . . . 4 + = (+g‘(ℂflds0))
22 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2730 . . . 4 (0g𝐺) = (0g𝐺)
242submmnd 18747 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
251, 24mp1i 13 . . . 4 ((𝜑𝑎𝐻) → (ℂflds0) ∈ Mnd)
26 mhphflem.e . . . . . 6 · = (.g𝐺)
2714ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
28 simpr 484 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
29 mhphflem.l . . . . . . 7 (𝜑𝐿𝐵)
3029ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
3118, 26, 27, 28, 30mulgnn0cld 19034 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝐿) ∈ 𝐵)
3231fmpttd 7090 . . . 4 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)):ℕ0𝐵)
3314ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐺 ∈ Mnd)
34 simprl 770 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
35 simprr 772 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3629ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐿𝐵)
3718, 26, 22mulgnn0dir 19043 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝐿𝐵)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
3833, 34, 35, 36, 37syl13anc 1374 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
39 eqid 2730 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) = (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))
40 oveq1 7397 . . . . . 6 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 𝐿) = ((𝑥 + 𝑦) · 𝐿))
41 nn0addcl 12484 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
4241adantl 481 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
43 ovexd 7425 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) ∈ V)
4439, 40, 42, 43fvmptd3 6994 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 𝐿))
45 oveq1 7397 . . . . . . 7 (𝑛 = 𝑥 → (𝑛 · 𝐿) = (𝑥 · 𝐿))
46 ovexd 7425 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 · 𝐿) ∈ V)
4739, 45, 34, 46fvmptd3 6994 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥) = (𝑥 · 𝐿))
48 oveq1 7397 . . . . . . 7 (𝑛 = 𝑦 → (𝑛 · 𝐿) = (𝑦 · 𝐿))
49 ovexd 7425 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑦 · 𝐿) ∈ V)
5039, 48, 35, 49fvmptd3 6994 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦) = (𝑦 · 𝐿))
5147, 50oveq12d 7408 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
5238, 44, 513eqtr4d 2775 . . . 4 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)))
53 oveq1 7397 . . . . . 6 (𝑛 = 0 → (𝑛 · 𝐿) = (0 · 𝐿))
54 0nn0 12464 . . . . . . 7 0 ∈ ℕ0
5554a1i 11 . . . . . 6 ((𝜑𝑎𝐻) → 0 ∈ ℕ0)
56 ovexd 7425 . . . . . 6 ((𝜑𝑎𝐻) → (0 · 𝐿) ∈ V)
5739, 53, 55, 56fvmptd3 6994 . . . . 5 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0 · 𝐿))
5829adantr 480 . . . . . 6 ((𝜑𝑎𝐻) → 𝐿𝐵)
5918, 23, 26mulg0 19013 . . . . . 6 (𝐿𝐵 → (0 · 𝐿) = (0g𝐺))
6058, 59syl 17 . . . . 5 ((𝜑𝑎𝐻) → (0 · 𝐿) = (0g𝐺))
6157, 60eqtrd 2765 . . . 4 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0g𝐺))
624, 18, 21, 22, 7, 23, 25, 15, 32, 52, 61ismhmd 18720 . . 3 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) ∈ ((ℂflds0) MndHom 𝐺))
63 elrabi 3657 . . . . . . 7 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝐷)
64 mhphflem.h . . . . . . 7 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
6563, 64eleq2s 2847 . . . . . 6 (𝑎𝐻𝑎𝐷)
6665adantl 481 . . . . 5 ((𝜑𝑎𝐻) → 𝑎𝐷)
67 mhphflem.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6867psrbagf 21834 . . . . 5 (𝑎𝐷𝑎:𝐼⟶ℕ0)
6966, 68syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎:𝐼⟶ℕ0)
7069ffvelcdmda 7059 . . 3 (((𝜑𝑎𝐻) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
7169feqmptd 6932 . . . 4 ((𝜑𝑎𝐻) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
7267psrbagfsupp 21835 . . . . 5 (𝑎𝐷𝑎 finSupp 0)
7366, 72syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎 finSupp 0)
7471, 73eqbrtrrd 5134 . . 3 ((𝜑𝑎𝐻) → (𝑣𝐼 ↦ (𝑎𝑣)) finSupp 0)
75 oveq1 7397 . . 3 (𝑛 = (𝑎𝑣) → (𝑛 · 𝐿) = ((𝑎𝑣) · 𝐿))
76 oveq1 7397 . . 3 (𝑛 = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) → (𝑛 · 𝐿) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
774, 7, 13, 15, 17, 62, 70, 74, 75, 76gsummhm2 19876 . 2 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
7871oveq2d 7406 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))))
79 oveq2 7398 . . . . . . . 8 (𝑔 = 𝑎 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑎))
8079eqeq1d 2732 . . . . . . 7 (𝑔 = 𝑎 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑎) = 𝑁))
8180, 64elrab2 3665 . . . . . 6 (𝑎𝐻 ↔ (𝑎𝐷 ∧ ((ℂflds0) Σg 𝑎) = 𝑁))
8281simprbi 496 . . . . 5 (𝑎𝐻 → ((ℂflds0) Σg 𝑎) = 𝑁)
8382adantl 481 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = 𝑁)
8478, 83eqtr3d 2767 . . 3 ((𝜑𝑎𝐻) → ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) = 𝑁)
8584oveq1d 7405 . 2 ((𝜑𝑎𝐻) → (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿) = (𝑁 · 𝐿))
8677, 85eqtrd 2765 1 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  0cc0 11075   + caddc 11078  cn 12193  0cn0 12449  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  SubMndcsubmnd 18716  .gcmg 19006  CMndccmn 19717  Ringcrg 20149  fldccnfld 21271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-cnfld 21272
This theorem is referenced by:  mhphf  42592
  Copyright terms: Public domain W3C validator