Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphflem Structured version   Visualization version   GIF version

Theorem mhphflem 42606
Description: Lemma for mhphf 42607. Add several multiples of 𝐿 together, in a case where the total amount of multiplies is 𝑁. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
mhphflem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhphflem.h 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhphflem.k 𝐵 = (Base‘𝐺)
mhphflem.e · = (.g𝐺)
mhphflem.i (𝜑𝐼𝑉)
mhphflem.g (𝜑𝐺 ∈ Mnd)
mhphflem.l (𝜑𝐿𝐵)
mhphflem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhphflem ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Distinct variable groups:   𝑣, ·   𝐷,𝑔   𝑣,𝐻   ,𝐼   𝑣,𝐼   𝑣,𝐿   𝑔,𝑁   𝑔,𝑎   ,𝑎   𝑣,𝑎   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑔,,𝑎)   𝐵(𝑣,𝑔,,𝑎)   𝐷(𝑣,,𝑎)   · (𝑔,,𝑎)   𝐺(𝑣,𝑔,,𝑎)   𝐻(𝑔,,𝑎)   𝐼(𝑔,𝑎)   𝐿(𝑔,,𝑎)   𝑁(𝑣,,𝑎)   𝑉(𝑣,𝑔,,𝑎)

Proof of Theorem mhphflem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0subm 21440 . . . 4 0 ∈ (SubMnd‘ℂfld)
2 eqid 2737 . . . . 5 (ℂflds0) = (ℂflds0)
32submbas 18827 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
41, 3ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
5 cnfld0 21405 . . . . 5 0 = (0g‘ℂfld)
62, 5subm0 18828 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
71, 6ax-mp 5 . . 3 0 = (0g‘(ℂflds0))
8 cnring 21403 . . . . . 6 fld ∈ Ring
9 ringcmn 20279 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
108, 9ax-mp 5 . . . . 5 fld ∈ CMnd
112submcmn 19856 . . . . 5 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
1210, 1, 11mp2an 692 . . . 4 (ℂflds0) ∈ CMnd
1312a1i 11 . . 3 ((𝜑𝑎𝐻) → (ℂflds0) ∈ CMnd)
14 mhphflem.g . . . 4 (𝜑𝐺 ∈ Mnd)
1514adantr 480 . . 3 ((𝜑𝑎𝐻) → 𝐺 ∈ Mnd)
16 mhphflem.i . . . 4 (𝜑𝐼𝑉)
1716adantr 480 . . 3 ((𝜑𝑎𝐻) → 𝐼𝑉)
18 mhphflem.k . . . 4 𝐵 = (Base‘𝐺)
19 cnfldadd 21370 . . . . . 6 + = (+g‘ℂfld)
202, 19ressplusg 17334 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g‘(ℂflds0)))
211, 20ax-mp 5 . . . 4 + = (+g‘(ℂflds0))
22 eqid 2737 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2737 . . . 4 (0g𝐺) = (0g𝐺)
242submmnd 18826 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
251, 24mp1i 13 . . . 4 ((𝜑𝑎𝐻) → (ℂflds0) ∈ Mnd)
26 mhphflem.e . . . . . 6 · = (.g𝐺)
2714ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
28 simpr 484 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
29 mhphflem.l . . . . . . 7 (𝜑𝐿𝐵)
3029ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
3118, 26, 27, 28, 30mulgnn0cld 19113 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝐿) ∈ 𝐵)
3231fmpttd 7135 . . . 4 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)):ℕ0𝐵)
3314ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐺 ∈ Mnd)
34 simprl 771 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
35 simprr 773 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3629ad2antrr 726 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐿𝐵)
3718, 26, 22mulgnn0dir 19122 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝐿𝐵)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
3833, 34, 35, 36, 37syl13anc 1374 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
39 eqid 2737 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) = (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))
40 oveq1 7438 . . . . . 6 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 𝐿) = ((𝑥 + 𝑦) · 𝐿))
41 nn0addcl 12561 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
4241adantl 481 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
43 ovexd 7466 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) ∈ V)
4439, 40, 42, 43fvmptd3 7039 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 𝐿))
45 oveq1 7438 . . . . . . 7 (𝑛 = 𝑥 → (𝑛 · 𝐿) = (𝑥 · 𝐿))
46 ovexd 7466 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 · 𝐿) ∈ V)
4739, 45, 34, 46fvmptd3 7039 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥) = (𝑥 · 𝐿))
48 oveq1 7438 . . . . . . 7 (𝑛 = 𝑦 → (𝑛 · 𝐿) = (𝑦 · 𝐿))
49 ovexd 7466 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑦 · 𝐿) ∈ V)
5039, 48, 35, 49fvmptd3 7039 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦) = (𝑦 · 𝐿))
5147, 50oveq12d 7449 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
5238, 44, 513eqtr4d 2787 . . . 4 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)))
53 oveq1 7438 . . . . . 6 (𝑛 = 0 → (𝑛 · 𝐿) = (0 · 𝐿))
54 0nn0 12541 . . . . . . 7 0 ∈ ℕ0
5554a1i 11 . . . . . 6 ((𝜑𝑎𝐻) → 0 ∈ ℕ0)
56 ovexd 7466 . . . . . 6 ((𝜑𝑎𝐻) → (0 · 𝐿) ∈ V)
5739, 53, 55, 56fvmptd3 7039 . . . . 5 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0 · 𝐿))
5829adantr 480 . . . . . 6 ((𝜑𝑎𝐻) → 𝐿𝐵)
5918, 23, 26mulg0 19092 . . . . . 6 (𝐿𝐵 → (0 · 𝐿) = (0g𝐺))
6058, 59syl 17 . . . . 5 ((𝜑𝑎𝐻) → (0 · 𝐿) = (0g𝐺))
6157, 60eqtrd 2777 . . . 4 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0g𝐺))
624, 18, 21, 22, 7, 23, 25, 15, 32, 52, 61ismhmd 18799 . . 3 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) ∈ ((ℂflds0) MndHom 𝐺))
63 elrabi 3687 . . . . . . 7 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝐷)
64 mhphflem.h . . . . . . 7 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
6563, 64eleq2s 2859 . . . . . 6 (𝑎𝐻𝑎𝐷)
6665adantl 481 . . . . 5 ((𝜑𝑎𝐻) → 𝑎𝐷)
67 mhphflem.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6867psrbagf 21938 . . . . 5 (𝑎𝐷𝑎:𝐼⟶ℕ0)
6966, 68syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎:𝐼⟶ℕ0)
7069ffvelcdmda 7104 . . 3 (((𝜑𝑎𝐻) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
7169feqmptd 6977 . . . 4 ((𝜑𝑎𝐻) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
7267psrbagfsupp 21939 . . . . 5 (𝑎𝐷𝑎 finSupp 0)
7366, 72syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎 finSupp 0)
7471, 73eqbrtrrd 5167 . . 3 ((𝜑𝑎𝐻) → (𝑣𝐼 ↦ (𝑎𝑣)) finSupp 0)
75 oveq1 7438 . . 3 (𝑛 = (𝑎𝑣) → (𝑛 · 𝐿) = ((𝑎𝑣) · 𝐿))
76 oveq1 7438 . . 3 (𝑛 = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) → (𝑛 · 𝐿) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
774, 7, 13, 15, 17, 62, 70, 74, 75, 76gsummhm2 19957 . 2 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
7871oveq2d 7447 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))))
79 oveq2 7439 . . . . . . . 8 (𝑔 = 𝑎 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑎))
8079eqeq1d 2739 . . . . . . 7 (𝑔 = 𝑎 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑎) = 𝑁))
8180, 64elrab2 3695 . . . . . 6 (𝑎𝐻 ↔ (𝑎𝐷 ∧ ((ℂflds0) Σg 𝑎) = 𝑁))
8281simprbi 496 . . . . 5 (𝑎𝐻 → ((ℂflds0) Σg 𝑎) = 𝑁)
8382adantl 481 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = 𝑁)
8478, 83eqtr3d 2779 . . 3 ((𝜑𝑎𝐻) → ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) = 𝑁)
8584oveq1d 7446 . 2 ((𝜑𝑎𝐻) → (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿) = (𝑁 · 𝐿))
8677, 85eqtrd 2777 1 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  0cc0 11155   + caddc 11158  cn 12266  0cn0 12526  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  SubMndcsubmnd 18795  .gcmg 19085  CMndccmn 19798  Ringcrg 20230  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-ur 20179  df-ring 20232  df-cring 20233  df-cnfld 21365
This theorem is referenced by:  mhphf  42607
  Copyright terms: Public domain W3C validator