Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhphflem Structured version   Visualization version   GIF version

Theorem mhphflem 41165
Description: Lemma for mhphf 41166. Add several multiples of 𝐿 together, in a case where the total amount of multiplies is 𝑁. (Contributed by SN, 30-Jul-2024.)
Hypotheses
Ref Expression
mhphflem.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhphflem.h 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
mhphflem.k 𝐵 = (Base‘𝐺)
mhphflem.e · = (.g𝐺)
mhphflem.i (𝜑𝐼𝑉)
mhphflem.g (𝜑𝐺 ∈ Mnd)
mhphflem.l (𝜑𝐿𝐵)
mhphflem.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
mhphflem ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Distinct variable groups:   𝑣, ·   𝐷,𝑔   𝑣,𝐻   ,𝐼   𝑣,𝐼   𝑣,𝐿   𝑔,𝑁   𝑔,𝑎   ,𝑎   𝑣,𝑎   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑔,,𝑎)   𝐵(𝑣,𝑔,,𝑎)   𝐷(𝑣,,𝑎)   · (𝑔,,𝑎)   𝐺(𝑣,𝑔,,𝑎)   𝐻(𝑔,,𝑎)   𝐼(𝑔,𝑎)   𝐿(𝑔,,𝑎)   𝑁(𝑣,,𝑎)   𝑉(𝑣,𝑔,,𝑎)

Proof of Theorem mhphflem
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0subm 20992 . . . 4 0 ∈ (SubMnd‘ℂfld)
2 eqid 2732 . . . . 5 (ℂflds0) = (ℂflds0)
32submbas 18691 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → ℕ0 = (Base‘(ℂflds0)))
41, 3ax-mp 5 . . 3 0 = (Base‘(ℂflds0))
5 cnfld0 20961 . . . . 5 0 = (0g‘ℂfld)
62, 5subm0 18692 . . . 4 (ℕ0 ∈ (SubMnd‘ℂfld) → 0 = (0g‘(ℂflds0)))
71, 6ax-mp 5 . . 3 0 = (0g‘(ℂflds0))
8 cnring 20959 . . . . . 6 fld ∈ Ring
9 ringcmn 20092 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
108, 9ax-mp 5 . . . . 5 fld ∈ CMnd
112submcmn 19700 . . . . 5 ((ℂfld ∈ CMnd ∧ ℕ0 ∈ (SubMnd‘ℂfld)) → (ℂflds0) ∈ CMnd)
1210, 1, 11mp2an 690 . . . 4 (ℂflds0) ∈ CMnd
1312a1i 11 . . 3 ((𝜑𝑎𝐻) → (ℂflds0) ∈ CMnd)
14 mhphflem.g . . . 4 (𝜑𝐺 ∈ Mnd)
1514adantr 481 . . 3 ((𝜑𝑎𝐻) → 𝐺 ∈ Mnd)
16 mhphflem.i . . . 4 (𝜑𝐼𝑉)
1716adantr 481 . . 3 ((𝜑𝑎𝐻) → 𝐼𝑉)
18 mhphflem.k . . . 4 𝐵 = (Base‘𝐺)
19 cnfldadd 20941 . . . . . 6 + = (+g‘ℂfld)
202, 19ressplusg 17231 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → + = (+g‘(ℂflds0)))
211, 20ax-mp 5 . . . 4 + = (+g‘(ℂflds0))
22 eqid 2732 . . . 4 (+g𝐺) = (+g𝐺)
23 eqid 2732 . . . 4 (0g𝐺) = (0g𝐺)
242submmnd 18690 . . . . 5 (ℕ0 ∈ (SubMnd‘ℂfld) → (ℂflds0) ∈ Mnd)
251, 24mp1i 13 . . . 4 ((𝜑𝑎𝐻) → (ℂflds0) ∈ Mnd)
26 mhphflem.e . . . . . 6 · = (.g𝐺)
2714ad2antrr 724 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐺 ∈ Mnd)
28 simpr 485 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
29 mhphflem.l . . . . . . 7 (𝜑𝐿𝐵)
3029ad2antrr 724 . . . . . 6 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → 𝐿𝐵)
3118, 26, 27, 28, 30mulgnn0cld 18969 . . . . 5 (((𝜑𝑎𝐻) ∧ 𝑛 ∈ ℕ0) → (𝑛 · 𝐿) ∈ 𝐵)
3231fmpttd 7111 . . . 4 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)):ℕ0𝐵)
3314ad2antrr 724 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐺 ∈ Mnd)
34 simprl 769 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑥 ∈ ℕ0)
35 simprr 771 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝑦 ∈ ℕ0)
3629ad2antrr 724 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → 𝐿𝐵)
3718, 26, 22mulgnn0dir 18978 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝐿𝐵)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
3833, 34, 35, 36, 37syl13anc 1372 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
39 eqid 2732 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) = (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))
40 oveq1 7412 . . . . . 6 (𝑛 = (𝑥 + 𝑦) → (𝑛 · 𝐿) = ((𝑥 + 𝑦) · 𝐿))
41 nn0addcl 12503 . . . . . . 7 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
4241adantl 482 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
43 ovexd 7440 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑥 + 𝑦) · 𝐿) ∈ V)
4439, 40, 42, 43fvmptd3 7018 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = ((𝑥 + 𝑦) · 𝐿))
45 oveq1 7412 . . . . . . 7 (𝑛 = 𝑥 → (𝑛 · 𝐿) = (𝑥 · 𝐿))
46 ovexd 7440 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 · 𝐿) ∈ V)
4739, 45, 34, 46fvmptd3 7018 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥) = (𝑥 · 𝐿))
48 oveq1 7412 . . . . . . 7 (𝑛 = 𝑦 → (𝑛 · 𝐿) = (𝑦 · 𝐿))
49 ovexd 7440 . . . . . . 7 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑦 · 𝐿) ∈ V)
5039, 48, 35, 49fvmptd3 7018 . . . . . 6 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦) = (𝑦 · 𝐿))
5147, 50oveq12d 7423 . . . . 5 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)) = ((𝑥 · 𝐿)(+g𝐺)(𝑦 · 𝐿)))
5238, 44, 513eqtr4d 2782 . . . 4 (((𝜑𝑎𝐻) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘(𝑥 + 𝑦)) = (((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑥)(+g𝐺)((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘𝑦)))
53 oveq1 7412 . . . . . 6 (𝑛 = 0 → (𝑛 · 𝐿) = (0 · 𝐿))
54 0nn0 12483 . . . . . . 7 0 ∈ ℕ0
5554a1i 11 . . . . . 6 ((𝜑𝑎𝐻) → 0 ∈ ℕ0)
56 ovexd 7440 . . . . . 6 ((𝜑𝑎𝐻) → (0 · 𝐿) ∈ V)
5739, 53, 55, 56fvmptd3 7018 . . . . 5 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0 · 𝐿))
5829adantr 481 . . . . . 6 ((𝜑𝑎𝐻) → 𝐿𝐵)
5918, 23, 26mulg0 18951 . . . . . 6 (𝐿𝐵 → (0 · 𝐿) = (0g𝐺))
6058, 59syl 17 . . . . 5 ((𝜑𝑎𝐻) → (0 · 𝐿) = (0g𝐺))
6157, 60eqtrd 2772 . . . 4 ((𝜑𝑎𝐻) → ((𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿))‘0) = (0g𝐺))
624, 18, 21, 22, 7, 23, 25, 15, 32, 52, 61ismhmd 18670 . . 3 ((𝜑𝑎𝐻) → (𝑛 ∈ ℕ0 ↦ (𝑛 · 𝐿)) ∈ ((ℂflds0) MndHom 𝐺))
63 elrabi 3676 . . . . . . 7 (𝑎 ∈ {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁} → 𝑎𝐷)
64 mhphflem.h . . . . . . 7 𝐻 = {𝑔𝐷 ∣ ((ℂflds0) Σg 𝑔) = 𝑁}
6563, 64eleq2s 2851 . . . . . 6 (𝑎𝐻𝑎𝐷)
6665adantl 482 . . . . 5 ((𝜑𝑎𝐻) → 𝑎𝐷)
67 mhphflem.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6867psrbagf 21462 . . . . 5 (𝑎𝐷𝑎:𝐼⟶ℕ0)
6966, 68syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎:𝐼⟶ℕ0)
7069ffvelcdmda 7083 . . 3 (((𝜑𝑎𝐻) ∧ 𝑣𝐼) → (𝑎𝑣) ∈ ℕ0)
7169feqmptd 6957 . . . 4 ((𝜑𝑎𝐻) → 𝑎 = (𝑣𝐼 ↦ (𝑎𝑣)))
7267psrbagfsupp 21464 . . . . 5 (𝑎𝐷𝑎 finSupp 0)
7366, 72syl 17 . . . 4 ((𝜑𝑎𝐻) → 𝑎 finSupp 0)
7471, 73eqbrtrrd 5171 . . 3 ((𝜑𝑎𝐻) → (𝑣𝐼 ↦ (𝑎𝑣)) finSupp 0)
75 oveq1 7412 . . 3 (𝑛 = (𝑎𝑣) → (𝑛 · 𝐿) = ((𝑎𝑣) · 𝐿))
76 oveq1 7412 . . 3 (𝑛 = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) → (𝑛 · 𝐿) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
774, 7, 13, 15, 17, 62, 70, 74, 75, 76gsummhm2 19801 . 2 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿))
7871oveq2d 7421 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))))
79 oveq2 7413 . . . . . . . 8 (𝑔 = 𝑎 → ((ℂflds0) Σg 𝑔) = ((ℂflds0) Σg 𝑎))
8079eqeq1d 2734 . . . . . . 7 (𝑔 = 𝑎 → (((ℂflds0) Σg 𝑔) = 𝑁 ↔ ((ℂflds0) Σg 𝑎) = 𝑁))
8180, 64elrab2 3685 . . . . . 6 (𝑎𝐻 ↔ (𝑎𝐷 ∧ ((ℂflds0) Σg 𝑎) = 𝑁))
8281simprbi 497 . . . . 5 (𝑎𝐻 → ((ℂflds0) Σg 𝑎) = 𝑁)
8382adantl 482 . . . 4 ((𝜑𝑎𝐻) → ((ℂflds0) Σg 𝑎) = 𝑁)
8478, 83eqtr3d 2774 . . 3 ((𝜑𝑎𝐻) → ((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) = 𝑁)
8584oveq1d 7420 . 2 ((𝜑𝑎𝐻) → (((ℂflds0) Σg (𝑣𝐼 ↦ (𝑎𝑣))) · 𝐿) = (𝑁 · 𝐿))
8677, 85eqtrd 2772 1 ((𝜑𝑎𝐻) → (𝐺 Σg (𝑣𝐼 ↦ ((𝑎𝑣) · 𝐿))) = (𝑁 · 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474   class class class wbr 5147  cmpt 5230  ccnv 5674  cima 5678  wf 6536  cfv 6540  (class class class)co 7405  m cmap 8816  Fincfn 8935   finSupp cfsupp 9357  0cc0 11106   + caddc 11109  cn 12208  0cn0 12468  Basecbs 17140  s cress 17169  +gcplusg 17193  0gc0g 17381   Σg cgsu 17382  Mndcmnd 18621  SubMndcsubmnd 18666  .gcmg 18944  CMndccmn 19642  Ringcrg 20049  fldccnfld 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-gsum 17384  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-mulg 18945  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-cnfld 20937
This theorem is referenced by:  mhphf  41166
  Copyright terms: Public domain W3C validator