MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem2 Structured version   Visualization version   GIF version

Theorem supmullem2 12237
Description: Lemma for supmul 12238. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem2 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . 5 𝑤 ∈ V
2 oveq1 7438 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2746 . . . . . . . 8 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3177 . . . . . . 7 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexvw 3236 . . . . . 6 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2739 . . . . . . 7 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3220 . . . . . 6 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7bitrid 283 . . . . 5 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3685 . . . 4 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1145 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1141 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sseld 3994 . . . . . . . 8 (𝜑 → (𝑎𝐴𝑎 ∈ ℝ))
1511simp3bi 1146 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
1615simp1d 1141 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
1716sseld 3994 . . . . . . . 8 (𝜑 → (𝑏𝐵𝑏 ∈ ℝ))
1814, 17anim12d 609 . . . . . . 7 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
19 remulcl 11238 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
2018, 19syl6 35 . . . . . 6 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ∈ ℝ))
21 eleq1a 2834 . . . . . 6 ((𝑎 · 𝑏) ∈ ℝ → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2220, 21syl6 35 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ)))
2322rexlimdvv 3210 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2410, 23biimtrid 242 . . 3 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
2524ssrdv 4001 . 2 (𝜑𝐶 ⊆ ℝ)
2612simp2d 1142 . . . . 5 (𝜑𝐴 ≠ ∅)
2715simp2d 1142 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
28 ovex 7464 . . . . . . . . . 10 (𝑎 · 𝑏) ∈ V
2928isseti 3496 . . . . . . . . 9 𝑤 𝑤 = (𝑎 · 𝑏)
3029rgenw 3063 . . . . . . . 8 𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)
31 r19.2z 4501 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ∀𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)) → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
3227, 30, 31sylancl 586 . . . . . . 7 (𝜑 → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
33 rexcom4 3286 . . . . . . 7 (∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3432, 33sylib 218 . . . . . 6 (𝜑 → ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3534ralrimivw 3148 . . . . 5 (𝜑 → ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
36 r19.2z 4501 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏)) → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3726, 35, 36syl2anc 584 . . . 4 (𝜑 → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
38 rexcom4 3286 . . . 4 (∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3937, 38sylib 218 . . 3 (𝜑 → ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
40 n0 4359 . . . 4 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4110exbii 1845 . . . 4 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4240, 41bitri 275 . . 3 (𝐶 ≠ ∅ ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4339, 42sylibr 234 . 2 (𝜑𝐶 ≠ ∅)
44 suprcl 12226 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
4512, 44syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
46 suprcl 12226 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
4715, 46syl 17 . . . 4 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
4845, 47remulcld 11289 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ)
499, 11supmullem1 12236 . . 3 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
50 brralrspcev 5208 . . 3 (((sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5148, 49, 50syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5225, 43, 513jca 1127 1 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  wss 3963  c0 4339   class class class wbr 5148  (class class class)co 7431  supcsup 9478  cr 11152  0cc0 11153   · cmul 11158   < clt 11293  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493
This theorem is referenced by:  supmul  12238  01sqrexlem5  15282
  Copyright terms: Public domain W3C validator