MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem2 Structured version   Visualization version   GIF version

Theorem supmullem2 12161
Description: Lemma for supmul 12162. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem2 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3454 . . . . 5 𝑤 ∈ V
2 oveq1 7397 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2741 . . . . . . . 8 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3158 . . . . . . 7 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexvw 3217 . . . . . 6 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2734 . . . . . . 7 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3203 . . . . . 6 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7bitrid 283 . . . . 5 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3652 . . . 4 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1146 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1142 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sseld 3948 . . . . . . . 8 (𝜑 → (𝑎𝐴𝑎 ∈ ℝ))
1511simp3bi 1147 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
1615simp1d 1142 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
1716sseld 3948 . . . . . . . 8 (𝜑 → (𝑏𝐵𝑏 ∈ ℝ))
1814, 17anim12d 609 . . . . . . 7 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
19 remulcl 11160 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
2018, 19syl6 35 . . . . . 6 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ∈ ℝ))
21 eleq1a 2824 . . . . . 6 ((𝑎 · 𝑏) ∈ ℝ → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2220, 21syl6 35 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ)))
2322rexlimdvv 3194 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2410, 23biimtrid 242 . . 3 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
2524ssrdv 3955 . 2 (𝜑𝐶 ⊆ ℝ)
2612simp2d 1143 . . . . 5 (𝜑𝐴 ≠ ∅)
2715simp2d 1143 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
28 ovex 7423 . . . . . . . . . 10 (𝑎 · 𝑏) ∈ V
2928isseti 3468 . . . . . . . . 9 𝑤 𝑤 = (𝑎 · 𝑏)
3029rgenw 3049 . . . . . . . 8 𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)
31 r19.2z 4461 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ∀𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)) → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
3227, 30, 31sylancl 586 . . . . . . 7 (𝜑 → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
33 rexcom4 3265 . . . . . . 7 (∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3432, 33sylib 218 . . . . . 6 (𝜑 → ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3534ralrimivw 3130 . . . . 5 (𝜑 → ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
36 r19.2z 4461 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏)) → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3726, 35, 36syl2anc 584 . . . 4 (𝜑 → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
38 rexcom4 3265 . . . 4 (∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3937, 38sylib 218 . . 3 (𝜑 → ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
40 n0 4319 . . . 4 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4110exbii 1848 . . . 4 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4240, 41bitri 275 . . 3 (𝐶 ≠ ∅ ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4339, 42sylibr 234 . 2 (𝜑𝐶 ≠ ∅)
44 suprcl 12150 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
4512, 44syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
46 suprcl 12150 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
4715, 46syl 17 . . . 4 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
4845, 47remulcld 11211 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ)
499, 11supmullem1 12160 . . 3 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
50 brralrspcev 5170 . . 3 (((sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5148, 49, 50syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5225, 43, 513jca 1128 1 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  wss 3917  c0 4299   class class class wbr 5110  (class class class)co 7390  supcsup 9398  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  supmul  12162  01sqrexlem5  15219
  Copyright terms: Public domain W3C validator