MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem2 Structured version   Visualization version   GIF version

Theorem supmullem2 11876
Description: Lemma for supmul 11877. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem2 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . 5 𝑤 ∈ V
2 oveq1 7262 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2749 . . . . . . . 8 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3225 . . . . . . 7 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexvw 3373 . . . . . 6 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2742 . . . . . . 7 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3228 . . . . . 6 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7syl5bb 282 . . . . 5 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3606 . . . 4 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1144 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1140 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sseld 3916 . . . . . . . 8 (𝜑 → (𝑎𝐴𝑎 ∈ ℝ))
1511simp3bi 1145 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
1615simp1d 1140 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
1716sseld 3916 . . . . . . . 8 (𝜑 → (𝑏𝐵𝑏 ∈ ℝ))
1814, 17anim12d 608 . . . . . . 7 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
19 remulcl 10887 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
2018, 19syl6 35 . . . . . 6 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ∈ ℝ))
21 eleq1a 2834 . . . . . 6 ((𝑎 · 𝑏) ∈ ℝ → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2220, 21syl6 35 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ)))
2322rexlimdvv 3221 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2410, 23syl5bi 241 . . 3 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
2524ssrdv 3923 . 2 (𝜑𝐶 ⊆ ℝ)
2612simp2d 1141 . . . . 5 (𝜑𝐴 ≠ ∅)
2715simp2d 1141 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
28 ovex 7288 . . . . . . . . . 10 (𝑎 · 𝑏) ∈ V
2928isseti 3437 . . . . . . . . 9 𝑤 𝑤 = (𝑎 · 𝑏)
3029rgenw 3075 . . . . . . . 8 𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)
31 r19.2z 4422 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ∀𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)) → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
3227, 30, 31sylancl 585 . . . . . . 7 (𝜑 → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
33 rexcom4 3179 . . . . . . 7 (∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3432, 33sylib 217 . . . . . 6 (𝜑 → ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3534ralrimivw 3108 . . . . 5 (𝜑 → ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
36 r19.2z 4422 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏)) → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3726, 35, 36syl2anc 583 . . . 4 (𝜑 → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
38 rexcom4 3179 . . . 4 (∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3937, 38sylib 217 . . 3 (𝜑 → ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
40 n0 4277 . . . 4 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4110exbii 1851 . . . 4 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4240, 41bitri 274 . . 3 (𝐶 ≠ ∅ ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4339, 42sylibr 233 . 2 (𝜑𝐶 ≠ ∅)
44 suprcl 11865 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
4512, 44syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
46 suprcl 11865 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
4715, 46syl 17 . . . 4 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
4845, 47remulcld 10936 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ)
499, 11supmullem1 11875 . . 3 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
50 brralrspcev 5130 . . 3 (((sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5148, 49, 50syl2anc 583 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5225, 43, 513jca 1126 1 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  supmul  11877  sqrlem5  14886
  Copyright terms: Public domain W3C validator