MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem2 Structured version   Visualization version   GIF version

Theorem supmullem2 12126
Description: Lemma for supmul 12127. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
supmul.2 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmullem2 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Distinct variable groups:   𝐴,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝐵,𝑏,𝑣,𝑥,𝑦,𝑤,𝑧   𝑥,𝐶,𝑤   𝜑,𝑏,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣)   𝐶(𝑦,𝑧,𝑣,𝑏)

Proof of Theorem supmullem2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3449 . . . . 5 𝑤 ∈ V
2 oveq1 7364 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑣 · 𝑏) = (𝑎 · 𝑏))
32eqeq2d 2747 . . . . . . . 8 (𝑣 = 𝑎 → (𝑧 = (𝑣 · 𝑏) ↔ 𝑧 = (𝑎 · 𝑏)))
43rexbidv 3175 . . . . . . 7 (𝑣 = 𝑎 → (∃𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑏𝐵 𝑧 = (𝑎 · 𝑏)))
54cbvrexvw 3226 . . . . . 6 (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏))
6 eqeq1 2740 . . . . . . 7 (𝑧 = 𝑤 → (𝑧 = (𝑎 · 𝑏) ↔ 𝑤 = (𝑎 · 𝑏)))
762rexbidv 3213 . . . . . 6 (𝑧 = 𝑤 → (∃𝑎𝐴𝑏𝐵 𝑧 = (𝑎 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
85, 7bitrid 282 . . . . 5 (𝑧 = 𝑤 → (∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏) ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏)))
9 supmul.1 . . . . 5 𝐶 = {𝑧 ∣ ∃𝑣𝐴𝑏𝐵 𝑧 = (𝑣 · 𝑏)}
101, 8, 9elab2 3634 . . . 4 (𝑤𝐶 ↔ ∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
11 supmul.2 . . . . . . . . . . 11 (𝜑 ↔ ((∀𝑥𝐴 0 ≤ 𝑥 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
1211simp2bi 1146 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
1312simp1d 1142 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
1413sseld 3943 . . . . . . . 8 (𝜑 → (𝑎𝐴𝑎 ∈ ℝ))
1511simp3bi 1147 . . . . . . . . . 10 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
1615simp1d 1142 . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ)
1716sseld 3943 . . . . . . . 8 (𝜑 → (𝑏𝐵𝑏 ∈ ℝ))
1814, 17anim12d 609 . . . . . . 7 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ)))
19 remulcl 11136 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎 · 𝑏) ∈ ℝ)
2018, 19syl6 35 . . . . . 6 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑎 · 𝑏) ∈ ℝ))
21 eleq1a 2833 . . . . . 6 ((𝑎 · 𝑏) ∈ ℝ → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2220, 21syl6 35 . . . . 5 (𝜑 → ((𝑎𝐴𝑏𝐵) → (𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ)))
2322rexlimdvv 3204 . . . 4 (𝜑 → (∃𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏) → 𝑤 ∈ ℝ))
2410, 23biimtrid 241 . . 3 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
2524ssrdv 3950 . 2 (𝜑𝐶 ⊆ ℝ)
2612simp2d 1143 . . . . 5 (𝜑𝐴 ≠ ∅)
2715simp2d 1143 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
28 ovex 7390 . . . . . . . . . 10 (𝑎 · 𝑏) ∈ V
2928isseti 3460 . . . . . . . . 9 𝑤 𝑤 = (𝑎 · 𝑏)
3029rgenw 3068 . . . . . . . 8 𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)
31 r19.2z 4452 . . . . . . . 8 ((𝐵 ≠ ∅ ∧ ∀𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏)) → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
3227, 30, 31sylancl 586 . . . . . . 7 (𝜑 → ∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏))
33 rexcom4 3271 . . . . . . 7 (∃𝑏𝐵𝑤 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3432, 33sylib 217 . . . . . 6 (𝜑 → ∃𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3534ralrimivw 3147 . . . . 5 (𝜑 → ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
36 r19.2z 4452 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏)) → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3726, 35, 36syl2anc 584 . . . 4 (𝜑 → ∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏))
38 rexcom4 3271 . . . 4 (∃𝑎𝐴𝑤𝑏𝐵 𝑤 = (𝑎 · 𝑏) ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
3937, 38sylib 217 . . 3 (𝜑 → ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
40 n0 4306 . . . 4 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4110exbii 1850 . . . 4 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4240, 41bitri 274 . . 3 (𝐶 ≠ ∅ ↔ ∃𝑤𝑎𝐴𝑏𝐵 𝑤 = (𝑎 · 𝑏))
4339, 42sylibr 233 . 2 (𝜑𝐶 ≠ ∅)
44 suprcl 12115 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
4512, 44syl 17 . . . 4 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
46 suprcl 12115 . . . . 5 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
4715, 46syl 17 . . . 4 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
4845, 47remulcld 11185 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ)
499, 11supmullem1 12125 . . 3 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )))
50 brralrspcev 5165 . . 3 (((sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < )) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) · sup(𝐵, ℝ, < ))) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5148, 49, 50syl2anc 584 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5225, 43, 513jca 1128 1 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  wss 3910  c0 4282   class class class wbr 5105  (class class class)co 7357  supcsup 9376  cr 11050  0cc0 11051   · cmul 11056   < clt 11189  cle 11190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388
This theorem is referenced by:  supmul  12127  01sqrexlem5  15131
  Copyright terms: Public domain W3C validator