MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmul1 Structured version   Visualization version   GIF version

Theorem supmul1 11874
Description: The supremum function distributes over multiplication, in the sense that 𝐴 · (sup𝐵) = sup(𝐴 · 𝐵), where 𝐴 · 𝐵 is shorthand for {𝐴 · 𝑏𝑏𝐵} and is defined as 𝐶 below. This is the simple version, with only one set argument; see supmul 11877 for the more general case with two set arguments. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul1.1 𝐶 = {𝑧 ∣ ∃𝑣𝐵 𝑧 = (𝐴 · 𝑣)}
supmul1.2 (𝜑 ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
Assertion
Ref Expression
supmul1 (𝜑 → (𝐴 · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑣,𝐴,𝑥,𝑧   𝑣,𝐵,𝑥,𝑦,𝑧   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣)   𝐴(𝑦)   𝐶(𝑦,𝑧,𝑣)

Proof of Theorem supmul1
Dummy variables 𝑏 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . . . . 8 𝑤 ∈ V
2 oveq2 7263 . . . . . . . . . . 11 (𝑣 = 𝑏 → (𝐴 · 𝑣) = (𝐴 · 𝑏))
32eqeq2d 2749 . . . . . . . . . 10 (𝑣 = 𝑏 → (𝑧 = (𝐴 · 𝑣) ↔ 𝑧 = (𝐴 · 𝑏)))
43cbvrexvw 3373 . . . . . . . . 9 (∃𝑣𝐵 𝑧 = (𝐴 · 𝑣) ↔ ∃𝑏𝐵 𝑧 = (𝐴 · 𝑏))
5 eqeq1 2742 . . . . . . . . . 10 (𝑧 = 𝑤 → (𝑧 = (𝐴 · 𝑏) ↔ 𝑤 = (𝐴 · 𝑏)))
65rexbidv 3225 . . . . . . . . 9 (𝑧 = 𝑤 → (∃𝑏𝐵 𝑧 = (𝐴 · 𝑏) ↔ ∃𝑏𝐵 𝑤 = (𝐴 · 𝑏)))
74, 6syl5bb 282 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑣𝐵 𝑧 = (𝐴 · 𝑣) ↔ ∃𝑏𝐵 𝑤 = (𝐴 · 𝑏)))
8 supmul1.1 . . . . . . . 8 𝐶 = {𝑧 ∣ ∃𝑣𝐵 𝑧 = (𝐴 · 𝑣)}
91, 7, 8elab2 3606 . . . . . . 7 (𝑤𝐶 ↔ ∃𝑏𝐵 𝑤 = (𝐴 · 𝑏))
10 supmul1.2 . . . . . . . . . . . . 13 (𝜑 ↔ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)))
11 simpr 484 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
1210, 11sylbi 216 . . . . . . . . . . . 12 (𝜑 → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
1312simp1d 1140 . . . . . . . . . . 11 (𝜑𝐵 ⊆ ℝ)
1413sselda 3917 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏 ∈ ℝ)
15 suprcl 11865 . . . . . . . . . . . 12 ((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) → sup(𝐵, ℝ, < ) ∈ ℝ)
1612, 15syl 17 . . . . . . . . . . 11 (𝜑 → sup(𝐵, ℝ, < ) ∈ ℝ)
1716adantr 480 . . . . . . . . . 10 ((𝜑𝑏𝐵) → sup(𝐵, ℝ, < ) ∈ ℝ)
18 simpl1 1189 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → 𝐴 ∈ ℝ)
1910, 18sylbi 216 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
20 simpl2 1190 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → 0 ≤ 𝐴)
2110, 20sylbi 216 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝐴)
2219, 21jca 511 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
2322adantr 480 . . . . . . . . . 10 ((𝜑𝑏𝐵) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
24 suprub 11866 . . . . . . . . . . 11 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ 𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
2512, 24sylan 579 . . . . . . . . . 10 ((𝜑𝑏𝐵) → 𝑏 ≤ sup(𝐵, ℝ, < ))
26 lemul2a 11760 . . . . . . . . . 10 (((𝑏 ∈ ℝ ∧ sup(𝐵, ℝ, < ) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝑏 ≤ sup(𝐵, ℝ, < )) → (𝐴 · 𝑏) ≤ (𝐴 · sup(𝐵, ℝ, < )))
2714, 17, 23, 25, 26syl31anc 1371 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐴 · 𝑏) ≤ (𝐴 · sup(𝐵, ℝ, < )))
28 breq1 5073 . . . . . . . . 9 (𝑤 = (𝐴 · 𝑏) → (𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < )) ↔ (𝐴 · 𝑏) ≤ (𝐴 · sup(𝐵, ℝ, < ))))
2927, 28syl5ibrcom 246 . . . . . . . 8 ((𝜑𝑏𝐵) → (𝑤 = (𝐴 · 𝑏) → 𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < ))))
3029rexlimdva 3212 . . . . . . 7 (𝜑 → (∃𝑏𝐵 𝑤 = (𝐴 · 𝑏) → 𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < ))))
319, 30syl5bi 241 . . . . . 6 (𝜑 → (𝑤𝐶𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < ))))
3231ralrimiv 3106 . . . . 5 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < )))
3319adantr 480 . . . . . . . . . . . 12 ((𝜑𝑏𝐵) → 𝐴 ∈ ℝ)
3433, 14remulcld 10936 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝐴 · 𝑏) ∈ ℝ)
35 eleq1a 2834 . . . . . . . . . . 11 ((𝐴 · 𝑏) ∈ ℝ → (𝑤 = (𝐴 · 𝑏) → 𝑤 ∈ ℝ))
3634, 35syl 17 . . . . . . . . . 10 ((𝜑𝑏𝐵) → (𝑤 = (𝐴 · 𝑏) → 𝑤 ∈ ℝ))
3736rexlimdva 3212 . . . . . . . . 9 (𝜑 → (∃𝑏𝐵 𝑤 = (𝐴 · 𝑏) → 𝑤 ∈ ℝ))
389, 37syl5bi 241 . . . . . . . 8 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
3938ssrdv 3923 . . . . . . 7 (𝜑𝐶 ⊆ ℝ)
40 simpr2 1193 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → 𝐵 ≠ ∅)
4110, 40sylbi 216 . . . . . . . . 9 (𝜑𝐵 ≠ ∅)
42 ovex 7288 . . . . . . . . . . 11 (𝐴 · 𝑏) ∈ V
4342isseti 3437 . . . . . . . . . 10 𝑤 𝑤 = (𝐴 · 𝑏)
4443rgenw 3075 . . . . . . . . 9 𝑏𝐵𝑤 𝑤 = (𝐴 · 𝑏)
45 r19.2z 4422 . . . . . . . . 9 ((𝐵 ≠ ∅ ∧ ∀𝑏𝐵𝑤 𝑤 = (𝐴 · 𝑏)) → ∃𝑏𝐵𝑤 𝑤 = (𝐴 · 𝑏))
4641, 44, 45sylancl 585 . . . . . . . 8 (𝜑 → ∃𝑏𝐵𝑤 𝑤 = (𝐴 · 𝑏))
479exbii 1851 . . . . . . . . 9 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑏𝐵 𝑤 = (𝐴 · 𝑏))
48 n0 4277 . . . . . . . . 9 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
49 rexcom4 3179 . . . . . . . . 9 (∃𝑏𝐵𝑤 𝑤 = (𝐴 · 𝑏) ↔ ∃𝑤𝑏𝐵 𝑤 = (𝐴 · 𝑏))
5047, 48, 493bitr4i 302 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ∃𝑏𝐵𝑤 𝑤 = (𝐴 · 𝑏))
5146, 50sylibr 233 . . . . . . 7 (𝜑𝐶 ≠ ∅)
5219, 16remulcld 10936 . . . . . . . 8 (𝜑 → (𝐴 · sup(𝐵, ℝ, < )) ∈ ℝ)
53 brralrspcev 5130 . . . . . . . 8 (((𝐴 · sup(𝐵, ℝ, < )) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < ))) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5452, 32, 53syl2anc 583 . . . . . . 7 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
5539, 51, 543jca 1126 . . . . . 6 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
56 suprleub 11871 . . . . . 6 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ (𝐴 · sup(𝐵, ℝ, < )) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤ (𝐴 · sup(𝐵, ℝ, < )) ↔ ∀𝑤𝐶 𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < ))))
5755, 52, 56syl2anc 583 . . . . 5 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (𝐴 · sup(𝐵, ℝ, < )) ↔ ∀𝑤𝐶 𝑤 ≤ (𝐴 · sup(𝐵, ℝ, < ))))
5832, 57mpbird 256 . . . 4 (𝜑 → sup(𝐶, ℝ, < ) ≤ (𝐴 · sup(𝐵, ℝ, < )))
59 simpr 484 . . . . . . 7 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < )))
60 suprcl 11865 . . . . . . . . . 10 ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) → sup(𝐶, ℝ, < ) ∈ ℝ)
6155, 60syl 17 . . . . . . . . 9 (𝜑 → sup(𝐶, ℝ, < ) ∈ ℝ)
6261adantr 480 . . . . . . . 8 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → sup(𝐶, ℝ, < ) ∈ ℝ)
6316adantr 480 . . . . . . . 8 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → sup(𝐵, ℝ, < ) ∈ ℝ)
6419adantr 480 . . . . . . . 8 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 𝐴 ∈ ℝ)
65 n0 4277 . . . . . . . . . . . 12 (𝐵 ≠ ∅ ↔ ∃𝑏 𝑏𝐵)
66 0red 10909 . . . . . . . . . . . . . . 15 ((𝜑𝑏𝐵) → 0 ∈ ℝ)
67 simpl3 1191 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥𝐵 0 ≤ 𝑥) ∧ (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥)) → ∀𝑥𝐵 0 ≤ 𝑥)
6810, 67sylbi 216 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥𝐵 0 ≤ 𝑥)
69 breq2 5074 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → (0 ≤ 𝑥 ↔ 0 ≤ 𝑏))
7069rspccva 3551 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐵 0 ≤ 𝑥𝑏𝐵) → 0 ≤ 𝑏)
7168, 70sylan 579 . . . . . . . . . . . . . . 15 ((𝜑𝑏𝐵) → 0 ≤ 𝑏)
7266, 14, 17, 71, 25letrd 11062 . . . . . . . . . . . . . 14 ((𝜑𝑏𝐵) → 0 ≤ sup(𝐵, ℝ, < ))
7372ex 412 . . . . . . . . . . . . 13 (𝜑 → (𝑏𝐵 → 0 ≤ sup(𝐵, ℝ, < )))
7473exlimdv 1937 . . . . . . . . . . . 12 (𝜑 → (∃𝑏 𝑏𝐵 → 0 ≤ sup(𝐵, ℝ, < )))
7565, 74syl5bi 241 . . . . . . . . . . 11 (𝜑 → (𝐵 ≠ ∅ → 0 ≤ sup(𝐵, ℝ, < )))
7641, 75mpd 15 . . . . . . . . . 10 (𝜑 → 0 ≤ sup(𝐵, ℝ, < ))
7776adantr 480 . . . . . . . . 9 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 0 ≤ sup(𝐵, ℝ, < ))
78 0red 10909 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐶) → 0 ∈ ℝ)
7938imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐶) → 𝑤 ∈ ℝ)
8061adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐶) → sup(𝐶, ℝ, < ) ∈ ℝ)
8121adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑏𝐵) → 0 ≤ 𝐴)
8233, 14, 81, 71mulge0d 11482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑏𝐵) → 0 ≤ (𝐴 · 𝑏))
83 breq2 5074 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐴 · 𝑏) → (0 ≤ 𝑤 ↔ 0 ≤ (𝐴 · 𝑏)))
8482, 83syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑏𝐵) → (𝑤 = (𝐴 · 𝑏) → 0 ≤ 𝑤))
8584rexlimdva 3212 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∃𝑏𝐵 𝑤 = (𝐴 · 𝑏) → 0 ≤ 𝑤))
869, 85syl5bi 241 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑤𝐶 → 0 ≤ 𝑤))
8786imp 406 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐶) → 0 ≤ 𝑤)
88 suprub 11866 . . . . . . . . . . . . . . . . 17 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
8955, 88sylan 579 . . . . . . . . . . . . . . . 16 ((𝜑𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
9078, 79, 80, 87, 89letrd 11062 . . . . . . . . . . . . . . 15 ((𝜑𝑤𝐶) → 0 ≤ sup(𝐶, ℝ, < ))
9190ex 412 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝐶 → 0 ≤ sup(𝐶, ℝ, < )))
9291exlimdv 1937 . . . . . . . . . . . . 13 (𝜑 → (∃𝑤 𝑤𝐶 → 0 ≤ sup(𝐶, ℝ, < )))
9348, 92syl5bi 241 . . . . . . . . . . . 12 (𝜑 → (𝐶 ≠ ∅ → 0 ≤ sup(𝐶, ℝ, < )))
9451, 93mpd 15 . . . . . . . . . . 11 (𝜑 → 0 ≤ sup(𝐶, ℝ, < ))
9594anim1i 614 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → (0 ≤ sup(𝐶, ℝ, < ) ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))))
96 0red 10909 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
97 lelttr 10996 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ sup(𝐶, ℝ, < ) ∈ ℝ ∧ (𝐴 · sup(𝐵, ℝ, < )) ∈ ℝ) → ((0 ≤ sup(𝐶, ℝ, < ) ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 0 < (𝐴 · sup(𝐵, ℝ, < ))))
9896, 61, 52, 97syl3anc 1369 . . . . . . . . . . 11 (𝜑 → ((0 ≤ sup(𝐶, ℝ, < ) ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 0 < (𝐴 · sup(𝐵, ℝ, < ))))
9998adantr 480 . . . . . . . . . 10 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → ((0 ≤ sup(𝐶, ℝ, < ) ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 0 < (𝐴 · sup(𝐵, ℝ, < ))))
10095, 99mpd 15 . . . . . . . . 9 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 0 < (𝐴 · sup(𝐵, ℝ, < )))
101 prodgt02 11753 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ sup(𝐵, ℝ, < ) ∈ ℝ) ∧ (0 ≤ sup(𝐵, ℝ, < ) ∧ 0 < (𝐴 · sup(𝐵, ℝ, < )))) → 0 < 𝐴)
10264, 63, 77, 100, 101syl22anc 835 . . . . . . . 8 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 0 < 𝐴)
103 ltdivmul 11780 . . . . . . . 8 ((sup(𝐶, ℝ, < ) ∈ ℝ ∧ sup(𝐵, ℝ, < ) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((sup(𝐶, ℝ, < ) / 𝐴) < sup(𝐵, ℝ, < ) ↔ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))))
10462, 63, 64, 102, 103syl112anc 1372 . . . . . . 7 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → ((sup(𝐶, ℝ, < ) / 𝐴) < sup(𝐵, ℝ, < ) ↔ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))))
10559, 104mpbird 256 . . . . . 6 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → (sup(𝐶, ℝ, < ) / 𝐴) < sup(𝐵, ℝ, < ))
10612adantr 480 . . . . . . 7 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → (𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥))
107102gt0ne0d 11469 . . . . . . . 8 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → 𝐴 ≠ 0)
10862, 64, 107redivcld 11733 . . . . . . 7 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → (sup(𝐶, ℝ, < ) / 𝐴) ∈ ℝ)
109 suprlub 11869 . . . . . . 7 (((𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐵 𝑦𝑥) ∧ (sup(𝐶, ℝ, < ) / 𝐴) ∈ ℝ) → ((sup(𝐶, ℝ, < ) / 𝐴) < sup(𝐵, ℝ, < ) ↔ ∃𝑏𝐵 (sup(𝐶, ℝ, < ) / 𝐴) < 𝑏))
110106, 108, 109syl2anc 583 . . . . . 6 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → ((sup(𝐶, ℝ, < ) / 𝐴) < sup(𝐵, ℝ, < ) ↔ ∃𝑏𝐵 (sup(𝐶, ℝ, < ) / 𝐴) < 𝑏))
111105, 110mpbid 231 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → ∃𝑏𝐵 (sup(𝐶, ℝ, < ) / 𝐴) < 𝑏)
11234adantlr 711 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → (𝐴 · 𝑏) ∈ ℝ)
11361ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → sup(𝐶, ℝ, < ) ∈ ℝ)
114 rspe 3232 . . . . . . . . . . . . . . 15 ((𝑏𝐵𝑤 = (𝐴 · 𝑏)) → ∃𝑏𝐵 𝑤 = (𝐴 · 𝑏))
115114, 9sylibr 233 . . . . . . . . . . . . . 14 ((𝑏𝐵𝑤 = (𝐴 · 𝑏)) → 𝑤𝐶)
116115adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑏𝐵𝑤 = (𝐴 · 𝑏))) → 𝑤𝐶)
117 simplrr 774 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑏𝐵𝑤 = (𝐴 · 𝑏))) ∧ 𝑤𝐶) → 𝑤 = (𝐴 · 𝑏))
11889adantlr 711 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑏𝐵𝑤 = (𝐴 · 𝑏))) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
119117, 118eqbrtrrd 5094 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑏𝐵𝑤 = (𝐴 · 𝑏))) ∧ 𝑤𝐶) → (𝐴 · 𝑏) ≤ sup(𝐶, ℝ, < ))
120116, 119mpdan 683 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑏𝐵𝑤 = (𝐴 · 𝑏))) → (𝐴 · 𝑏) ≤ sup(𝐶, ℝ, < ))
121120expr 456 . . . . . . . . . . 11 ((𝜑𝑏𝐵) → (𝑤 = (𝐴 · 𝑏) → (𝐴 · 𝑏) ≤ sup(𝐶, ℝ, < )))
122121exlimdv 1937 . . . . . . . . . 10 ((𝜑𝑏𝐵) → (∃𝑤 𝑤 = (𝐴 · 𝑏) → (𝐴 · 𝑏) ≤ sup(𝐶, ℝ, < )))
12343, 122mpi 20 . . . . . . . . 9 ((𝜑𝑏𝐵) → (𝐴 · 𝑏) ≤ sup(𝐶, ℝ, < ))
124123adantlr 711 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → (𝐴 · 𝑏) ≤ sup(𝐶, ℝ, < ))
125112, 113, 124lensymd 11056 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → ¬ sup(𝐶, ℝ, < ) < (𝐴 · 𝑏))
12614adantlr 711 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → 𝑏 ∈ ℝ)
12719ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → 𝐴 ∈ ℝ)
128102adantr 480 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → 0 < 𝐴)
129 ltdivmul 11780 . . . . . . . 8 ((sup(𝐶, ℝ, < ) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((sup(𝐶, ℝ, < ) / 𝐴) < 𝑏 ↔ sup(𝐶, ℝ, < ) < (𝐴 · 𝑏)))
130113, 126, 127, 128, 129syl112anc 1372 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → ((sup(𝐶, ℝ, < ) / 𝐴) < 𝑏 ↔ sup(𝐶, ℝ, < ) < (𝐴 · 𝑏)))
131125, 130mtbird 324 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) ∧ 𝑏𝐵) → ¬ (sup(𝐶, ℝ, < ) / 𝐴) < 𝑏)
132131nrexdv 3197 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))) → ¬ ∃𝑏𝐵 (sup(𝐶, ℝ, < ) / 𝐴) < 𝑏)
133111, 132pm2.65da 813 . . . 4 (𝜑 → ¬ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < )))
13458, 133jca 511 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (𝐴 · sup(𝐵, ℝ, < )) ∧ ¬ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < ))))
13561, 52eqleltd 11049 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) = (𝐴 · sup(𝐵, ℝ, < )) ↔ (sup(𝐶, ℝ, < ) ≤ (𝐴 · sup(𝐵, ℝ, < )) ∧ ¬ sup(𝐶, ℝ, < ) < (𝐴 · sup(𝐵, ℝ, < )))))
136134, 135mpbird 256 . 2 (𝜑 → sup(𝐶, ℝ, < ) = (𝐴 · sup(𝐵, ℝ, < )))
137136eqcomd 2744 1 (𝜑 → (𝐴 · sup(𝐵, ℝ, < )) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  supcsup 9129  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  supmul  11877  hoidmvlelem1  44023
  Copyright terms: Public domain W3C validator