MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supaddc Structured version   Visualization version   GIF version

Theorem supaddc 12262
Description: The supremum function distributes over addition in a sense similar to that in supmul1 12264. (Contributed by Brendan Leahy, 25-Sep-2017.)
Hypotheses
Ref Expression
supadd.a1 (𝜑𝐴 ⊆ ℝ)
supadd.a2 (𝜑𝐴 ≠ ∅)
supadd.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supaddc.b (𝜑𝐵 ∈ ℝ)
supaddc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
Assertion
Ref Expression
supaddc (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣   𝑥,𝐶   𝜑,𝑧,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑦,𝑧,𝑣)

Proof of Theorem supaddc
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . . . 7 𝑤 ∈ V
2 oveq1 7455 . . . . . . . . . 10 (𝑣 = 𝑎 → (𝑣 + 𝐵) = (𝑎 + 𝐵))
32eqeq2d 2751 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝐵) ↔ 𝑧 = (𝑎 + 𝐵)))
43cbvrexvw 3244 . . . . . . . 8 (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑧 = (𝑎 + 𝐵))
5 eqeq1 2744 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝐵) ↔ 𝑤 = (𝑎 + 𝐵)))
65rexbidv 3185 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑎𝐴 𝑧 = (𝑎 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
74, 6bitrid 283 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
8 supaddc.c . . . . . . 7 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
91, 7, 8elab2 3698 . . . . . 6 (𝑤𝐶 ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
10 supadd.a1 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
1110sselda 4008 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
12 supadd.a2 . . . . . . . . . . 11 (𝜑𝐴 ≠ ∅)
13 supadd.a3 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
1410, 12, 13suprcld 12258 . . . . . . . . . 10 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1514adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
16 supaddc.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1716adantr 480 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝐵 ∈ ℝ)
1810, 12, 133jca 1128 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
19 suprub 12256 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2018, 19sylan 579 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2111, 15, 17, 20leadd1dd 11904 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
22 breq1 5169 . . . . . . . 8 (𝑤 = (𝑎 + 𝐵) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2321, 22syl5ibrcom 247 . . . . . . 7 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2423rexlimdva 3161 . . . . . 6 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
259, 24biimtrid 242 . . . . 5 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2625ralrimiv 3151 . . . 4 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))
2711, 17readdcld 11319 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
28 eleq1a 2839 . . . . . . . . 9 ((𝑎 + 𝐵) ∈ ℝ → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
2927, 28syl 17 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
3029rexlimdva 3161 . . . . . . 7 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
319, 30biimtrid 242 . . . . . 6 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
3231ssrdv 4014 . . . . 5 (𝜑𝐶 ⊆ ℝ)
33 ovex 7481 . . . . . . . . 9 (𝑎 + 𝐵) ∈ V
3433isseti 3506 . . . . . . . 8 𝑤 𝑤 = (𝑎 + 𝐵)
3534rgenw 3071 . . . . . . 7 𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)
36 r19.2z 4518 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
3712, 35, 36sylancl 585 . . . . . 6 (𝜑 → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
389exbii 1846 . . . . . . 7 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
39 n0 4376 . . . . . . 7 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
40 rexcom4 3294 . . . . . . 7 (∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵) ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
4138, 39, 403bitr4i 303 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
4237, 41sylibr 234 . . . . 5 (𝜑𝐶 ≠ ∅)
4314, 16readdcld 11319 . . . . . 6 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ)
44 brralrspcev 5226 . . . . . 6 (((sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
4543, 26, 44syl2anc 583 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
46 suprleub 12261 . . . . 5 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4732, 42, 45, 43, 46syl31anc 1373 . . . 4 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4826, 47mpbird 257 . . 3 (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
4932, 42, 45suprcld 12258 . . . . . . 7 (𝜑 → sup(𝐶, ℝ, < ) ∈ ℝ)
5049, 16, 14ltsubaddd 11886 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)))
5150biimpar 477 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → (sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ))
5249, 16resubcld 11718 . . . . . . 7 (𝜑 → (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ)
53 suprlub 12259 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5410, 12, 13, 52, 53syl31anc 1373 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5554adantr 480 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5651, 55mpbid 232 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
5727adantlr 714 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
5849ad2antrr 725 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → sup(𝐶, ℝ, < ) ∈ ℝ)
59 rspe 3255 . . . . . . . . . . . . . 14 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
6059, 9sylibr 234 . . . . . . . . . . . . 13 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → 𝑤𝐶)
6160adantl 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → 𝑤𝐶)
62 simplrr 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 = (𝑎 + 𝐵))
6332, 42, 453jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
64 suprub 12256 . . . . . . . . . . . . . . 15 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6563, 64sylan 579 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6665adantlr 714 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6762, 66eqbrtrrd 5190 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6861, 67mpdan 686 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6968expr 456 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7069exlimdv 1932 . . . . . . . . 9 ((𝜑𝑎𝐴) → (∃𝑤 𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7134, 70mpi 20 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7271adantlr 714 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7357, 58, 72lensymd 11441 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵))
7416ad2antrr 725 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝐵 ∈ ℝ)
7511adantlr 714 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
7658, 74, 75ltsubaddd 11886 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ((sup(𝐶, ℝ, < ) − 𝐵) < 𝑎 ↔ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)))
7773, 76mtbird 325 . . . . 5 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
7877nrexdv 3155 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ¬ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
7956, 78pm2.65da 816 . . 3 (𝜑 → ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))
8049, 43eqleltd 11434 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵) ↔ (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ∧ ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))))
8148, 79, 80mpbir2and 712 . 2 (𝜑 → sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵))
8281eqcomd 2746 1 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   class class class wbr 5166  (class class class)co 7448  supcsup 9509  cr 11183   + caddc 11187   < clt 11324  cle 11325  cmin 11520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  supadd  12263  supsubc  45268
  Copyright terms: Public domain W3C validator