MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supaddc Structured version   Visualization version   GIF version

Theorem supaddc 12177
Description: The supremum function distributes over addition in a sense similar to that in supmul1 12179. (Contributed by Brendan Leahy, 25-Sep-2017.)
Hypotheses
Ref Expression
supadd.a1 (𝜑𝐴 ⊆ ℝ)
supadd.a2 (𝜑𝐴 ≠ ∅)
supadd.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supaddc.b (𝜑𝐵 ∈ ℝ)
supaddc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
Assertion
Ref Expression
supaddc (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣   𝑥,𝐶   𝜑,𝑧,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑦,𝑧,𝑣)

Proof of Theorem supaddc
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3478 . . . . . . 7 𝑤 ∈ V
2 oveq1 7412 . . . . . . . . . 10 (𝑣 = 𝑎 → (𝑣 + 𝐵) = (𝑎 + 𝐵))
32eqeq2d 2743 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝐵) ↔ 𝑧 = (𝑎 + 𝐵)))
43cbvrexvw 3235 . . . . . . . 8 (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑧 = (𝑎 + 𝐵))
5 eqeq1 2736 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝐵) ↔ 𝑤 = (𝑎 + 𝐵)))
65rexbidv 3178 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑎𝐴 𝑧 = (𝑎 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
74, 6bitrid 282 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
8 supaddc.c . . . . . . 7 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
91, 7, 8elab2 3671 . . . . . 6 (𝑤𝐶 ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
10 supadd.a1 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
1110sselda 3981 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
12 supadd.a2 . . . . . . . . . . 11 (𝜑𝐴 ≠ ∅)
13 supadd.a3 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
1410, 12, 13suprcld 12173 . . . . . . . . . 10 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1514adantr 481 . . . . . . . . 9 ((𝜑𝑎𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
16 supaddc.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1716adantr 481 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝐵 ∈ ℝ)
1810, 12, 133jca 1128 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
19 suprub 12171 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2018, 19sylan 580 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2111, 15, 17, 20leadd1dd 11824 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
22 breq1 5150 . . . . . . . 8 (𝑤 = (𝑎 + 𝐵) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2321, 22syl5ibrcom 246 . . . . . . 7 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2423rexlimdva 3155 . . . . . 6 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
259, 24biimtrid 241 . . . . 5 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2625ralrimiv 3145 . . . 4 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))
2711, 17readdcld 11239 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
28 eleq1a 2828 . . . . . . . . 9 ((𝑎 + 𝐵) ∈ ℝ → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
2927, 28syl 17 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
3029rexlimdva 3155 . . . . . . 7 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
319, 30biimtrid 241 . . . . . 6 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
3231ssrdv 3987 . . . . 5 (𝜑𝐶 ⊆ ℝ)
33 ovex 7438 . . . . . . . . 9 (𝑎 + 𝐵) ∈ V
3433isseti 3489 . . . . . . . 8 𝑤 𝑤 = (𝑎 + 𝐵)
3534rgenw 3065 . . . . . . 7 𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)
36 r19.2z 4493 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
3712, 35, 36sylancl 586 . . . . . 6 (𝜑 → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
389exbii 1850 . . . . . . 7 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
39 n0 4345 . . . . . . 7 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
40 rexcom4 3285 . . . . . . 7 (∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵) ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
4138, 39, 403bitr4i 302 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
4237, 41sylibr 233 . . . . 5 (𝜑𝐶 ≠ ∅)
4314, 16readdcld 11239 . . . . . 6 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ)
44 brralrspcev 5207 . . . . . 6 (((sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
4543, 26, 44syl2anc 584 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
46 suprleub 12176 . . . . 5 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4732, 42, 45, 43, 46syl31anc 1373 . . . 4 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4826, 47mpbird 256 . . 3 (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
4932, 42, 45suprcld 12173 . . . . . . 7 (𝜑 → sup(𝐶, ℝ, < ) ∈ ℝ)
5049, 16, 14ltsubaddd 11806 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)))
5150biimpar 478 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → (sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ))
5249, 16resubcld 11638 . . . . . . 7 (𝜑 → (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ)
53 suprlub 12174 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5410, 12, 13, 52, 53syl31anc 1373 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5554adantr 481 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5651, 55mpbid 231 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
5727adantlr 713 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
5849ad2antrr 724 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → sup(𝐶, ℝ, < ) ∈ ℝ)
59 rspe 3246 . . . . . . . . . . . . . 14 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
6059, 9sylibr 233 . . . . . . . . . . . . 13 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → 𝑤𝐶)
6160adantl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → 𝑤𝐶)
62 simplrr 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 = (𝑎 + 𝐵))
6332, 42, 453jca 1128 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
64 suprub 12171 . . . . . . . . . . . . . . 15 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6563, 64sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6665adantlr 713 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6762, 66eqbrtrrd 5171 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6861, 67mpdan 685 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6968expr 457 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7069exlimdv 1936 . . . . . . . . 9 ((𝜑𝑎𝐴) → (∃𝑤 𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7134, 70mpi 20 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7271adantlr 713 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7357, 58, 72lensymd 11361 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵))
7416ad2antrr 724 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝐵 ∈ ℝ)
7511adantlr 713 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
7658, 74, 75ltsubaddd 11806 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ((sup(𝐶, ℝ, < ) − 𝐵) < 𝑎 ↔ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)))
7773, 76mtbird 324 . . . . 5 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
7877nrexdv 3149 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ¬ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
7956, 78pm2.65da 815 . . 3 (𝜑 → ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))
8049, 43eqleltd 11354 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵) ↔ (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ∧ ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))))
8148, 79, 80mpbir2and 711 . 2 (𝜑 → sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵))
8281eqcomd 2738 1 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321   class class class wbr 5147  (class class class)co 7405  supcsup 9431  cr 11105   + caddc 11109   < clt 11244  cle 11245  cmin 11440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443
This theorem is referenced by:  supadd  12178  supsubc  44049
  Copyright terms: Public domain W3C validator