MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supaddc Structured version   Visualization version   GIF version

Theorem supaddc 11327
Description: The supremum function distributes over addition in a sense similar to that in supmul1 11329. (Contributed by Brendan Leahy, 25-Sep-2017.)
Hypotheses
Ref Expression
supadd.a1 (𝜑𝐴 ⊆ ℝ)
supadd.a2 (𝜑𝐴 ≠ ∅)
supadd.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supaddc.b (𝜑𝐵 ∈ ℝ)
supaddc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
Assertion
Ref Expression
supaddc (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣   𝑥,𝐶   𝜑,𝑧,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑦,𝑧,𝑣)

Proof of Theorem supaddc
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3417 . . . . . . 7 𝑤 ∈ V
2 oveq1 6917 . . . . . . . . . 10 (𝑣 = 𝑎 → (𝑣 + 𝐵) = (𝑎 + 𝐵))
32eqeq2d 2835 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝐵) ↔ 𝑧 = (𝑎 + 𝐵)))
43cbvrexv 3384 . . . . . . . 8 (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑧 = (𝑎 + 𝐵))
5 eqeq1 2829 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝐵) ↔ 𝑤 = (𝑎 + 𝐵)))
65rexbidv 3262 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑎𝐴 𝑧 = (𝑎 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
74, 6syl5bb 275 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
8 supaddc.c . . . . . . 7 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
91, 7, 8elab2 3575 . . . . . 6 (𝑤𝐶 ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
10 supadd.a1 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
1110sselda 3827 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
12 supadd.a2 . . . . . . . . . . 11 (𝜑𝐴 ≠ ∅)
13 supadd.a3 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
14 suprcl 11320 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
1510, 12, 13, 14syl3anc 1494 . . . . . . . . . 10 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1615adantr 474 . . . . . . . . 9 ((𝜑𝑎𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
17 supaddc.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1817adantr 474 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝐵 ∈ ℝ)
1910, 12, 133jca 1162 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
20 suprub 11321 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2119, 20sylan 575 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2211, 16, 18, 21leadd1dd 10973 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
23 breq1 4878 . . . . . . . 8 (𝑤 = (𝑎 + 𝐵) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2422, 23syl5ibrcom 239 . . . . . . 7 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2524rexlimdva 3240 . . . . . 6 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
269, 25syl5bi 234 . . . . 5 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2726ralrimiv 3174 . . . 4 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))
2811, 18readdcld 10393 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
29 eleq1a 2901 . . . . . . . . 9 ((𝑎 + 𝐵) ∈ ℝ → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
3028, 29syl 17 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
3130rexlimdva 3240 . . . . . . 7 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
329, 31syl5bi 234 . . . . . 6 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
3332ssrdv 3833 . . . . 5 (𝜑𝐶 ⊆ ℝ)
34 ovex 6942 . . . . . . . . 9 (𝑎 + 𝐵) ∈ V
3534isseti 3426 . . . . . . . 8 𝑤 𝑤 = (𝑎 + 𝐵)
3635rgenw 3133 . . . . . . 7 𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)
37 r19.2z 4284 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
3812, 36, 37sylancl 580 . . . . . 6 (𝜑 → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
399exbii 1947 . . . . . . 7 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
40 n0 4162 . . . . . . 7 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
41 rexcom4 3442 . . . . . . 7 (∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵) ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
4239, 40, 413bitr4i 295 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
4338, 42sylibr 226 . . . . 5 (𝜑𝐶 ≠ ∅)
4415, 17readdcld 10393 . . . . . 6 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ)
45 brralrspcev 4935 . . . . . 6 (((sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
4644, 27, 45syl2anc 579 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
47 suprleub 11326 . . . . 5 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4833, 43, 46, 44, 47syl31anc 1496 . . . 4 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4927, 48mpbird 249 . . 3 (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
50 suprcl 11320 . . . . . . . 8 ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) → sup(𝐶, ℝ, < ) ∈ ℝ)
5133, 43, 46, 50syl3anc 1494 . . . . . . 7 (𝜑 → sup(𝐶, ℝ, < ) ∈ ℝ)
5251, 17, 15ltsubaddd 10955 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)))
5352biimpar 471 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → (sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ))
5451, 17resubcld 10789 . . . . . . 7 (𝜑 → (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ)
55 suprlub 11324 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5610, 12, 13, 54, 55syl31anc 1496 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5756adantr 474 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5853, 57mpbid 224 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
59 rspe 3211 . . . . . . . . . . . . . 14 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
6059, 9sylibr 226 . . . . . . . . . . . . 13 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → 𝑤𝐶)
6160adantl 475 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → 𝑤𝐶)
62 simplrr 796 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 = (𝑎 + 𝐵))
6333, 43, 463jca 1162 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
64 suprub 11321 . . . . . . . . . . . . . . 15 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6563, 64sylan 575 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6665adantlr 706 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6762, 66eqbrtrrd 4899 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6861, 67mpdan 678 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
6968expr 450 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7069exlimdv 2032 . . . . . . . . 9 ((𝜑𝑎𝐴) → (∃𝑤 𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7135, 70mpi 20 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7271adantlr 706 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7328adantlr 706 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
7451ad2antrr 717 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → sup(𝐶, ℝ, < ) ∈ ℝ)
7573, 74lenltd 10509 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ((𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ) ↔ ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)))
7672, 75mpbid 224 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵))
7717ad2antrr 717 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝐵 ∈ ℝ)
7811adantlr 706 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
7974, 77, 78ltsubaddd 10955 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ((sup(𝐶, ℝ, < ) − 𝐵) < 𝑎 ↔ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)))
8076, 79mtbird 317 . . . . 5 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
8180nrexdv 3209 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ¬ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
8258, 81pm2.65da 851 . . 3 (𝜑 → ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))
8351, 44eqleltd 10507 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵) ↔ (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ∧ ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))))
8449, 82, 83mpbir2and 704 . 2 (𝜑 → sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵))
8584eqcomd 2831 1 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wex 1878  wcel 2164  {cab 2811  wne 2999  wral 3117  wrex 3118  wss 3798  c0 4146   class class class wbr 4875  (class class class)co 6910  supcsup 8621  cr 10258   + caddc 10262   < clt 10398  cle 10399  cmin 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595
This theorem is referenced by:  supadd  11328  supsubc  40360
  Copyright terms: Public domain W3C validator