MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuspgrop Structured version   Visualization version   GIF version

Theorem isuspgrop 26938
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.)
Assertion
Ref Expression
isuspgrop ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Distinct variable groups:   𝐸,𝑝   𝑉,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem isuspgrop
StepHypRef Expression
1 opex 5347 . . 3 𝑉, 𝐸⟩ ∈ V
2 eqid 2819 . . . 4 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
3 eqid 2819 . . . 4 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
42, 3isuspgr 26929 . . 3 (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
51, 4mp1i 13 . 2 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6 opiedgfv 26784 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
76dmeqd 5767 . . 3 ((𝑉𝑊𝐸𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸)
8 opvtxfv 26781 . . . . . 6 ((𝑉𝑊𝐸𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
98pweqd 4542 . . . . 5 ((𝑉𝑊𝐸𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉)
109difeq1d 4096 . . . 4 ((𝑉𝑊𝐸𝑋) → (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1110rabeqdv 3483 . . 3 ((𝑉𝑊𝐸𝑋) → {𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
126, 7, 11f1eq123d 6601 . 2 ((𝑉𝑊𝐸𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
135, 12bitrd 281 1 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2107  {crab 3140  Vcvv 3493  cdif 3931  c0 4289  𝒫 cpw 4537  {csn 4559  cop 4565   class class class wbr 5057  dom cdm 5548  1-1wf1 6345  cfv 6348  cle 10668  2c2 11684  chash 13682  Vtxcvtx 26773  iEdgciedg 26774  USPGraphcuspgr 26925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356  df-1st 7681  df-2nd 7682  df-vtx 26775  df-iedg 26776  df-uspgr 26927
This theorem is referenced by:  uspgrsprfo  44008
  Copyright terms: Public domain W3C validator