![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isuspgrop | Structured version Visualization version GIF version |
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.) |
Ref | Expression |
---|---|
isuspgrop | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5484 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
2 | eqid 2740 | . . . 4 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
3 | eqid 2740 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
4 | 2, 3 | isuspgr 29187 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ V → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
5 | 1, 4 | mp1i 13 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
6 | opiedgfv 29042 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
7 | 6 | dmeqd 5930 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom (iEdg‘〈𝑉, 𝐸〉) = dom 𝐸) |
8 | opvtxfv 29039 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
9 | 8 | pweqd 4639 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝒫 (Vtx‘〈𝑉, 𝐸〉) = 𝒫 𝑉) |
10 | 9 | difeq1d 4148 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
11 | 10 | rabeqdv 3459 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → {𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
12 | 6, 7, 11 | f1eq123d 6854 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ((iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
13 | 5, 12 | bitrd 279 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 {crab 3443 Vcvv 3488 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 {csn 4648 〈cop 4654 class class class wbr 5166 dom cdm 5700 –1-1→wf1 6570 ‘cfv 6573 ≤ cle 11325 2c2 12348 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 USPGraphcuspgr 29183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fv 6581 df-1st 8030 df-2nd 8031 df-vtx 29033 df-iedg 29034 df-uspgr 29185 |
This theorem is referenced by: uspgrsprfo 47871 |
Copyright terms: Public domain | W3C validator |