MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuspgrop Structured version   Visualization version   GIF version

Theorem isuspgrop 29088
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.)
Assertion
Ref Expression
isuspgrop ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Distinct variable groups:   𝐸,𝑝   𝑉,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem isuspgrop
StepHypRef Expression
1 opex 5424 . . 3 𝑉, 𝐸⟩ ∈ V
2 eqid 2729 . . . 4 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
3 eqid 2729 . . . 4 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
42, 3isuspgr 29079 . . 3 (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
51, 4mp1i 13 . 2 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6 opiedgfv 28934 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
76dmeqd 5869 . . 3 ((𝑉𝑊𝐸𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸)
8 opvtxfv 28931 . . . . . 6 ((𝑉𝑊𝐸𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
98pweqd 4580 . . . . 5 ((𝑉𝑊𝐸𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉)
109difeq1d 4088 . . . 4 ((𝑉𝑊𝐸𝑋) → (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1110rabeqdv 3421 . . 3 ((𝑉𝑊𝐸𝑋) → {𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
126, 7, 11f1eq123d 6792 . 2 ((𝑉𝑊𝐸𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
135, 12bitrd 279 1 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  c0 4296  𝒫 cpw 4563  {csn 4589  cop 4595   class class class wbr 5107  dom cdm 5638  1-1wf1 6508  cfv 6511  cle 11209  2c2 12241  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  USPGraphcuspgr 29075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519  df-1st 7968  df-2nd 7969  df-vtx 28925  df-iedg 28926  df-uspgr 29077
This theorem is referenced by:  uspgrsprfo  48136
  Copyright terms: Public domain W3C validator