MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuspgrop Structured version   Visualization version   GIF version

Theorem isuspgrop 29140
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.)
Assertion
Ref Expression
isuspgrop ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Distinct variable groups:   𝐸,𝑝   𝑉,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem isuspgrop
StepHypRef Expression
1 opex 5439 . . 3 𝑉, 𝐸⟩ ∈ V
2 eqid 2735 . . . 4 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
3 eqid 2735 . . . 4 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
42, 3isuspgr 29131 . . 3 (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
51, 4mp1i 13 . 2 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6 opiedgfv 28986 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
76dmeqd 5885 . . 3 ((𝑉𝑊𝐸𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸)
8 opvtxfv 28983 . . . . . 6 ((𝑉𝑊𝐸𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
98pweqd 4592 . . . . 5 ((𝑉𝑊𝐸𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉)
109difeq1d 4100 . . . 4 ((𝑉𝑊𝐸𝑋) → (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1110rabeqdv 3431 . . 3 ((𝑉𝑊𝐸𝑋) → {𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
126, 7, 11f1eq123d 6810 . 2 ((𝑉𝑊𝐸𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
135, 12bitrd 279 1 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  {crab 3415  Vcvv 3459  cdif 3923  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607   class class class wbr 5119  dom cdm 5654  1-1wf1 6528  cfv 6531  cle 11270  2c2 12295  chash 14348  Vtxcvtx 28975  iEdgciedg 28976  USPGraphcuspgr 29127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fv 6539  df-1st 7988  df-2nd 7989  df-vtx 28977  df-iedg 28978  df-uspgr 29129
This theorem is referenced by:  uspgrsprfo  48123
  Copyright terms: Public domain W3C validator