MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuspgrop Structured version   Visualization version   GIF version

Theorem isuspgrop 26873
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.)
Assertion
Ref Expression
isuspgrop ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Distinct variable groups:   𝐸,𝑝   𝑉,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem isuspgrop
StepHypRef Expression
1 opex 5347 . . 3 𝑉, 𝐸⟩ ∈ V
2 eqid 2818 . . . 4 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
3 eqid 2818 . . . 4 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
42, 3isuspgr 26864 . . 3 (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
51, 4mp1i 13 . 2 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
6 opiedgfv 26719 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
76dmeqd 5767 . . 3 ((𝑉𝑊𝐸𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸)
8 opvtxfv 26716 . . . . . 6 ((𝑉𝑊𝐸𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
98pweqd 4540 . . . . 5 ((𝑉𝑊𝐸𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉)
109difeq1d 4095 . . . 4 ((𝑉𝑊𝐸𝑋) → (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
1110rabeqdv 3482 . . 3 ((𝑉𝑊𝐸𝑋) → {𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})
126, 7, 11f1eq123d 6601 . 2 ((𝑉𝑊𝐸𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
135, 12bitrd 280 1 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USPGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2105  {crab 3139  Vcvv 3492  cdif 3930  c0 4288  𝒫 cpw 4535  {csn 4557  cop 4563   class class class wbr 5057  dom cdm 5548  1-1wf1 6345  cfv 6348  cle 10664  2c2 11680  chash 13678  Vtxcvtx 26708  iEdgciedg 26709  USPGraphcuspgr 26860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356  df-1st 7678  df-2nd 7679  df-vtx 26710  df-iedg 26711  df-uspgr 26862
This theorem is referenced by:  uspgrsprfo  43900
  Copyright terms: Public domain W3C validator