| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isuspgrop | Structured version Visualization version GIF version | ||
| Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.) |
| Ref | Expression |
|---|---|
| isuspgrop | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5469 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
| 2 | eqid 2737 | . . . 4 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
| 3 | eqid 2737 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
| 4 | 2, 3 | isuspgr 29169 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ V → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
| 5 | 1, 4 | mp1i 13 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
| 6 | opiedgfv 29024 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 7 | 6 | dmeqd 5916 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom (iEdg‘〈𝑉, 𝐸〉) = dom 𝐸) |
| 8 | opvtxfv 29021 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 9 | 8 | pweqd 4617 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝒫 (Vtx‘〈𝑉, 𝐸〉) = 𝒫 𝑉) |
| 10 | 9 | difeq1d 4125 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
| 11 | 10 | rabeqdv 3452 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → {𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
| 12 | 6, 7, 11 | f1eq123d 6840 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ((iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
| 13 | 5, 12 | bitrd 279 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 {crab 3436 Vcvv 3480 ∖ cdif 3948 ∅c0 4333 𝒫 cpw 4600 {csn 4626 〈cop 4632 class class class wbr 5143 dom cdm 5685 –1-1→wf1 6558 ‘cfv 6561 ≤ cle 11296 2c2 12321 ♯chash 14369 Vtxcvtx 29013 iEdgciedg 29014 USPGraphcuspgr 29165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fv 6569 df-1st 8014 df-2nd 8015 df-vtx 29015 df-iedg 29016 df-uspgr 29167 |
| This theorem is referenced by: uspgrsprfo 48064 |
| Copyright terms: Public domain | W3C validator |