![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isuspgrop | Structured version Visualization version GIF version |
Description: The property of being an undirected simple pseudograph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 25-Nov-2021.) |
Ref | Expression |
---|---|
isuspgrop | ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5123 | . . 3 ⊢ 〈𝑉, 𝐸〉 ∈ V | |
2 | eqid 2799 | . . . 4 ⊢ (Vtx‘〈𝑉, 𝐸〉) = (Vtx‘〈𝑉, 𝐸〉) | |
3 | eqid 2799 | . . . 4 ⊢ (iEdg‘〈𝑉, 𝐸〉) = (iEdg‘〈𝑉, 𝐸〉) | |
4 | 2, 3 | isuspgr 26388 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ V → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
5 | 1, 4 | mp1i 13 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ (iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
6 | opiedgfv 26242 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
7 | 6 | dmeqd 5529 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → dom (iEdg‘〈𝑉, 𝐸〉) = dom 𝐸) |
8 | opvtxfv 26239 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
9 | 8 | pweqd 4354 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → 𝒫 (Vtx‘〈𝑉, 𝐸〉) = 𝒫 𝑉) |
10 | 9 | difeq1d 3925 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) = (𝒫 𝑉 ∖ {∅})) |
11 | 10 | rabeqdv 3378 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → {𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2}) |
12 | 6, 7, 11 | f1eq123d 6349 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → ((iEdg‘〈𝑉, 𝐸〉):dom (iEdg‘〈𝑉, 𝐸〉)–1-1→{𝑝 ∈ (𝒫 (Vtx‘〈𝑉, 𝐸〉) ∖ {∅}) ∣ (♯‘𝑝) ≤ 2} ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
13 | 5, 12 | bitrd 271 | 1 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝐸 ∈ 𝑋) → (〈𝑉, 𝐸〉 ∈ USPGraph ↔ 𝐸:dom 𝐸–1-1→{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (♯‘𝑝) ≤ 2})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 {crab 3093 Vcvv 3385 ∖ cdif 3766 ∅c0 4115 𝒫 cpw 4349 {csn 4368 〈cop 4374 class class class wbr 4843 dom cdm 5312 –1-1→wf1 6098 ‘cfv 6101 ≤ cle 10364 2c2 11368 ♯chash 13370 Vtxcvtx 26231 iEdgciedg 26232 USPGraphcuspgr 26384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fv 6109 df-1st 7401 df-2nd 7402 df-vtx 26233 df-iedg 26234 df-uspgr 26386 |
This theorem is referenced by: uspgrsprfo 42555 |
Copyright terms: Public domain | W3C validator |