Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isusgrop Structured version   Visualization version   GIF version

Theorem isusgrop 26461
 Description: The property of being an undirected simple graph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 30-Nov-2020.)
Assertion
Ref Expression
isusgrop ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}))
Distinct variable groups:   𝐸,𝑝   𝑉,𝑝   𝑊,𝑝   𝑋,𝑝

Proof of Theorem isusgrop
StepHypRef Expression
1 opex 5153 . . 3 𝑉, 𝐸⟩ ∈ V
2 eqid 2825 . . . 4 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
3 eqid 2825 . . . 4 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
42, 3isusgrs 26455 . . 3 (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∣ (♯‘𝑝) = 2}))
51, 4mp1i 13 . 2 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∣ (♯‘𝑝) = 2}))
6 opiedgfv 26305 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
76dmeqd 5558 . . 3 ((𝑉𝑊𝐸𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸)
8 opvtxfv 26302 . . . . 5 ((𝑉𝑊𝐸𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
98pweqd 4383 . . . 4 ((𝑉𝑊𝐸𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉)
109rabeqdv 3407 . . 3 ((𝑉𝑊𝐸𝑋) → {𝑝 ∈ 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∣ (♯‘𝑝) = 2} = {𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2})
116, 7, 10f1eq123d 6371 . 2 ((𝑉𝑊𝐸𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)–1-1→{𝑝 ∈ 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∣ (♯‘𝑝) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}))
125, 11bitrd 271 1 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ USGraph ↔ 𝐸:dom 𝐸1-1→{𝑝 ∈ 𝒫 𝑉 ∣ (♯‘𝑝) = 2}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1658   ∈ wcel 2166  {crab 3121  Vcvv 3414  𝒫 cpw 4378  ⟨cop 4403  dom cdm 5342  –1-1→wf1 6120  ‘cfv 6123  2c2 11406  ♯chash 13410  Vtxcvtx 26294  iEdgciedg 26295  USGraphcusgr 26448 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-hash 13411  df-vtx 26296  df-iedg 26297  df-usgr 26450 This theorem is referenced by:  usgrop  26462
 Copyright terms: Public domain W3C validator