| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdval2 | Structured version Visualization version GIF version | ||
| Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
| Ref | Expression |
|---|---|
| lcdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lcdval.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lcdval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| lcdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lcdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lcdval.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
| lcdval2.b | ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| Ref | Expression |
|---|---|
| lcdval2 | ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | lcdval.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 3 | lcdval.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 4 | lcdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | lcdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | lcdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 7 | lcdval.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lcdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 41708 | . 2 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |
| 10 | lcdval2.b | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 11 | 10 | oveq2i 7363 | . 2 ⊢ (𝐷 ↾s 𝐵) = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
| 12 | 9, 11 | eqtr4di 2786 | 1 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ‘cfv 6486 (class class class)co 7352 ↾s cress 17143 LFnlclfn 39176 LKerclk 39204 LDualcld 39242 LHypclh 40103 DVecHcdvh 41197 ocHcoch 41466 LCDualclcd 41705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-lcdual 41706 |
| This theorem is referenced by: lcdvbase 41712 lcdlss 41738 |
| Copyright terms: Public domain | W3C validator |