![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdval2 | Structured version Visualization version GIF version |
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdval.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcdval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcdval.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
lcdval2.b | ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
Ref | Expression |
---|---|
lcdval2 | ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdval.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcdval.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
4 | lcdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | lcdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcdval.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 41299 | . 2 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |
10 | lcdval2.b | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
11 | 10 | oveq2i 7425 | . 2 ⊢ (𝐷 ↾s 𝐵) = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
12 | 9, 11 | eqtr4di 2784 | 1 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3420 ‘cfv 6544 (class class class)co 7414 ↾s cress 17235 LFnlclfn 38766 LKerclk 38794 LDualcld 38832 LHypclh 39694 DVecHcdvh 40788 ocHcoch 41057 LCDualclcd 41296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-lcdual 41297 |
This theorem is referenced by: lcdvbase 41303 lcdlss 41329 |
Copyright terms: Public domain | W3C validator |