Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval2 Structured version   Visualization version   GIF version

Theorem lcdval2 40927
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h 𝐻 = (LHypβ€˜πΎ)
lcdval.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
lcdval.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
lcdval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
lcdval.f 𝐹 = (LFnlβ€˜π‘ˆ)
lcdval.l 𝐿 = (LKerβ€˜π‘ˆ)
lcdval.d 𝐷 = (LDualβ€˜π‘ˆ)
lcdval.k (πœ‘ β†’ (𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻))
lcdval2.b 𝐡 = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}
Assertion
Ref Expression
lcdval2 (πœ‘ β†’ 𝐢 = (𝐷 β†Ύs 𝐡))
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,π‘Š
Allowed substitution hints:   πœ‘(𝑓)   𝐡(𝑓)   𝐢(𝑓)   𝐷(𝑓)   π‘ˆ(𝑓)   𝐻(𝑓)   𝐿(𝑓)   βŠ₯ (𝑓)   𝑋(𝑓)

Proof of Theorem lcdval2
StepHypRef Expression
1 lcdval.h . . 3 𝐻 = (LHypβ€˜πΎ)
2 lcdval.o . . 3 βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
3 lcdval.c . . 3 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
4 lcdval.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
5 lcdval.f . . 3 𝐹 = (LFnlβ€˜π‘ˆ)
6 lcdval.l . . 3 𝐿 = (LKerβ€˜π‘ˆ)
7 lcdval.d . . 3 𝐷 = (LDualβ€˜π‘ˆ)
8 lcdval.k . . 3 (πœ‘ β†’ (𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcdval 40926 . 2 (πœ‘ β†’ 𝐢 = (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}))
10 lcdval2.b . . 3 𝐡 = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}
1110oveq2i 7423 . 2 (𝐷 β†Ύs 𝐡) = (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)})
129, 11eqtr4di 2789 1 (πœ‘ β†’ 𝐢 = (𝐷 β†Ύs 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  {crab 3431  β€˜cfv 6543  (class class class)co 7412   β†Ύs cress 17180  LFnlclfn 38393  LKerclk 38421  LDualcld 38459  LHypclh 39321  DVecHcdvh 40415  ocHcoch 40684  LCDualclcd 40923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-lcdual 40924
This theorem is referenced by:  lcdvbase  40930  lcdlss  40956
  Copyright terms: Public domain W3C validator