Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval2 Structured version   Visualization version   GIF version

Theorem lcdval2 39341
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h 𝐻 = (LHyp‘𝐾)
lcdval.o = ((ocH‘𝐾)‘𝑊)
lcdval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdval.f 𝐹 = (LFnl‘𝑈)
lcdval.l 𝐿 = (LKer‘𝑈)
lcdval.d 𝐷 = (LDual‘𝑈)
lcdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
lcdval2.b 𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcdval2 (𝜑𝐶 = (𝐷s 𝐵))
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   (𝑓)   𝑋(𝑓)

Proof of Theorem lcdval2
StepHypRef Expression
1 lcdval.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcdval.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcdval.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 lcdval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcdval.f . . 3 𝐹 = (LFnl‘𝑈)
6 lcdval.l . . 3 𝐿 = (LKer‘𝑈)
7 lcdval.d . . 3 𝐷 = (LDual‘𝑈)
8 lcdval.k . . 3 (𝜑 → (𝐾𝑋𝑊𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcdval 39340 . 2 (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
10 lcdval2.b . . 3 𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
1110oveq2i 7224 . 2 (𝐷s 𝐵) = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
129, 11eqtr4di 2796 1 (𝜑𝐶 = (𝐷s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  cfv 6380  (class class class)co 7213  s cress 16784  LFnlclfn 36808  LKerclk 36836  LDualcld 36874  LHypclh 37735  DVecHcdvh 38829  ocHcoch 39098  LCDualclcd 39337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-lcdual 39338
This theorem is referenced by:  lcdvbase  39344  lcdlss  39370
  Copyright terms: Public domain W3C validator