Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval2 Structured version   Visualization version   GIF version

Theorem lcdval2 41709
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h 𝐻 = (LHyp‘𝐾)
lcdval.o = ((ocH‘𝐾)‘𝑊)
lcdval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdval.f 𝐹 = (LFnl‘𝑈)
lcdval.l 𝐿 = (LKer‘𝑈)
lcdval.d 𝐷 = (LDual‘𝑈)
lcdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
lcdval2.b 𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcdval2 (𝜑𝐶 = (𝐷s 𝐵))
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   (𝑓)   𝑋(𝑓)

Proof of Theorem lcdval2
StepHypRef Expression
1 lcdval.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcdval.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcdval.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 lcdval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcdval.f . . 3 𝐹 = (LFnl‘𝑈)
6 lcdval.l . . 3 𝐿 = (LKer‘𝑈)
7 lcdval.d . . 3 𝐷 = (LDual‘𝑈)
8 lcdval.k . . 3 (𝜑 → (𝐾𝑋𝑊𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcdval 41708 . 2 (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
10 lcdval2.b . . 3 𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
1110oveq2i 7363 . 2 (𝐷s 𝐵) = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
129, 11eqtr4di 2786 1 (𝜑𝐶 = (𝐷s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  cfv 6486  (class class class)co 7352  s cress 17143  LFnlclfn 39176  LKerclk 39204  LDualcld 39242  LHypclh 40103  DVecHcdvh 41197  ocHcoch 41466  LCDualclcd 41705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-lcdual 41706
This theorem is referenced by:  lcdvbase  41712  lcdlss  41738
  Copyright terms: Public domain W3C validator