Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval2 Structured version   Visualization version   GIF version

Theorem lcdval2 41614
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h 𝐻 = (LHyp‘𝐾)
lcdval.o = ((ocH‘𝐾)‘𝑊)
lcdval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdval.f 𝐹 = (LFnl‘𝑈)
lcdval.l 𝐿 = (LKer‘𝑈)
lcdval.d 𝐷 = (LDual‘𝑈)
lcdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
lcdval2.b 𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
Assertion
Ref Expression
lcdval2 (𝜑𝐶 = (𝐷s 𝐵))
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   (𝑓)   𝑋(𝑓)

Proof of Theorem lcdval2
StepHypRef Expression
1 lcdval.h . . 3 𝐻 = (LHyp‘𝐾)
2 lcdval.o . . 3 = ((ocH‘𝐾)‘𝑊)
3 lcdval.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 lcdval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcdval.f . . 3 𝐹 = (LFnl‘𝑈)
6 lcdval.l . . 3 𝐿 = (LKer‘𝑈)
7 lcdval.d . . 3 𝐷 = (LDual‘𝑈)
8 lcdval.k . . 3 (𝜑 → (𝐾𝑋𝑊𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcdval 41613 . 2 (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
10 lcdval2.b . . 3 𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
1110oveq2i 7421 . 2 (𝐷s 𝐵) = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
129, 11eqtr4di 2789 1 (𝜑𝐶 = (𝐷s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  cfv 6536  (class class class)co 7410  s cress 17256  LFnlclfn 39080  LKerclk 39108  LDualcld 39146  LHypclh 40008  DVecHcdvh 41102  ocHcoch 41371  LCDualclcd 41610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-lcdual 41611
This theorem is referenced by:  lcdvbase  41617  lcdlss  41643
  Copyright terms: Public domain W3C validator