![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdval2 | Structured version Visualization version GIF version |
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdval.h | β’ π» = (LHypβπΎ) |
lcdval.o | β’ β₯ = ((ocHβπΎ)βπ) |
lcdval.c | β’ πΆ = ((LCDualβπΎ)βπ) |
lcdval.u | β’ π = ((DVecHβπΎ)βπ) |
lcdval.f | β’ πΉ = (LFnlβπ) |
lcdval.l | β’ πΏ = (LKerβπ) |
lcdval.d | β’ π· = (LDualβπ) |
lcdval.k | β’ (π β (πΎ β π β§ π β π»)) |
lcdval2.b | β’ π΅ = {π β πΉ β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} |
Ref | Expression |
---|---|
lcdval2 | β’ (π β πΆ = (π· βΎs π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdval.h | . . 3 β’ π» = (LHypβπΎ) | |
2 | lcdval.o | . . 3 β’ β₯ = ((ocHβπΎ)βπ) | |
3 | lcdval.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
4 | lcdval.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
5 | lcdval.f | . . 3 β’ πΉ = (LFnlβπ) | |
6 | lcdval.l | . . 3 β’ πΏ = (LKerβπ) | |
7 | lcdval.d | . . 3 β’ π· = (LDualβπ) | |
8 | lcdval.k | . . 3 β’ (π β (πΎ β π β§ π β π»)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 40926 | . 2 β’ (π β πΆ = (π· βΎs {π β πΉ β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)})) |
10 | lcdval2.b | . . 3 β’ π΅ = {π β πΉ β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} | |
11 | 10 | oveq2i 7423 | . 2 β’ (π· βΎs π΅) = (π· βΎs {π β πΉ β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)}) |
12 | 9, 11 | eqtr4di 2789 | 1 β’ (π β πΆ = (π· βΎs π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {crab 3431 βcfv 6543 (class class class)co 7412 βΎs cress 17180 LFnlclfn 38393 LKerclk 38421 LDualcld 38459 LHypclh 39321 DVecHcdvh 40415 ocHcoch 40684 LCDualclcd 40923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-lcdual 40924 |
This theorem is referenced by: lcdvbase 40930 lcdlss 40956 |
Copyright terms: Public domain | W3C validator |