Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdval2 | Structured version Visualization version GIF version |
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdval.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcdval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdval.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcdval.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcdval.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcdval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
lcdval2.b | ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
Ref | Expression |
---|---|
lcdval2 | ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdval.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdval.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
3 | lcdval.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
4 | lcdval.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | lcdval.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lcdval.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
7 | lcdval.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcdval.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 39824 | . 2 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |
10 | lcdval2.b | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
11 | 10 | oveq2i 7328 | . 2 ⊢ (𝐷 ↾s 𝐵) = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
12 | 9, 11 | eqtr4di 2795 | 1 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {crab 3404 ‘cfv 6466 (class class class)co 7317 ↾s cress 17018 LFnlclfn 37291 LKerclk 37319 LDualcld 37357 LHypclh 38219 DVecHcdvh 39313 ocHcoch 39582 LCDualclcd 39821 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-lcdual 39822 |
This theorem is referenced by: lcdvbase 39828 lcdlss 39854 |
Copyright terms: Public domain | W3C validator |