Step | Hyp | Ref
| Expression |
1 | | lcdval.k |
. 2
⊢ (𝜑 → (𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻)) |
2 | | lcdval.c |
. . . 4
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
3 | | lcdval.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
4 | 3 | lcdfval 39529 |
. . . . 5
⊢ (𝐾 ∈ 𝑋 → (LCDual‘𝐾) = (𝑤 ∈ 𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))) |
5 | 4 | fveq1d 6758 |
. . . 4
⊢ (𝐾 ∈ 𝑋 → ((LCDual‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊)) |
6 | 2, 5 | syl5eq 2791 |
. . 3
⊢ (𝐾 ∈ 𝑋 → 𝐶 = ((𝑤 ∈ 𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊)) |
7 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) |
8 | | lcdval.u |
. . . . . . . 8
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
9 | 7, 8 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈) |
10 | 9 | fveq2d 6760 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (LDual‘((DVecH‘𝐾)‘𝑤)) = (LDual‘𝑈)) |
11 | | lcdval.d |
. . . . . 6
⊢ 𝐷 = (LDual‘𝑈) |
12 | 10, 11 | eqtr4di 2797 |
. . . . 5
⊢ (𝑤 = 𝑊 → (LDual‘((DVecH‘𝐾)‘𝑤)) = 𝐷) |
13 | 9 | fveq2d 6760 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = (LFnl‘𝑈)) |
14 | | lcdval.f |
. . . . . . 7
⊢ 𝐹 = (LFnl‘𝑈) |
15 | 13, 14 | eqtr4di 2797 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = 𝐹) |
16 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊)) |
17 | | lcdval.o |
. . . . . . . . 9
⊢ ⊥ =
((ocH‘𝐾)‘𝑊) |
18 | 16, 17 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ⊥ ) |
19 | 9 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = (LKer‘𝑈)) |
20 | | lcdval.l |
. . . . . . . . . . 11
⊢ 𝐿 = (LKer‘𝑈) |
21 | 19, 20 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = 𝐿) |
22 | 21 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) = (𝐿‘𝑓)) |
23 | 18, 22 | fveq12d 6763 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) = ( ⊥ ‘(𝐿‘𝑓))) |
24 | 18, 23 | fveq12d 6763 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ( ⊥ ‘( ⊥
‘(𝐿‘𝑓)))) |
25 | 24, 22 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ↔ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓))) |
26 | 15, 25 | rabeqbidv 3410 |
. . . . 5
⊢ (𝑤 = 𝑊 → {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)} = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
27 | 12, 26 | oveq12d 7273 |
. . . 4
⊢ (𝑤 = 𝑊 → ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}) = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |
28 | | eqid 2738 |
. . . 4
⊢ (𝑤 ∈ 𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})) = (𝑤 ∈ 𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})) |
29 | | ovex 7288 |
. . . 4
⊢ (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) ∈ V |
30 | 27, 28, 29 | fvmpt 6857 |
. . 3
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊) = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |
31 | 6, 30 | sylan9eq 2799 |
. 2
⊢ ((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) → 𝐶 = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |
32 | 1, 31 | syl 17 |
1
⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥
‘(𝐿‘𝑓))) = (𝐿‘𝑓)})) |