Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval Structured version   Visualization version   GIF version

Theorem lcdval 40999
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h 𝐻 = (LHypβ€˜πΎ)
lcdval.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
lcdval.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
lcdval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
lcdval.f 𝐹 = (LFnlβ€˜π‘ˆ)
lcdval.l 𝐿 = (LKerβ€˜π‘ˆ)
lcdval.d 𝐷 = (LDualβ€˜π‘ˆ)
lcdval.k (πœ‘ β†’ (𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻))
Assertion
Ref Expression
lcdval (πœ‘ β†’ 𝐢 = (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}))
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,π‘Š
Allowed substitution hints:   πœ‘(𝑓)   𝐢(𝑓)   𝐷(𝑓)   π‘ˆ(𝑓)   𝐻(𝑓)   𝐿(𝑓)   βŠ₯ (𝑓)   𝑋(𝑓)

Proof of Theorem lcdval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 lcdval.k . 2 (πœ‘ β†’ (𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻))
2 lcdval.c . . . 4 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
3 lcdval.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
43lcdfval 40998 . . . . 5 (𝐾 ∈ 𝑋 β†’ (LCDualβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)})))
54fveq1d 6893 . . . 4 (𝐾 ∈ 𝑋 β†’ ((LCDualβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)}))β€˜π‘Š))
62, 5eqtrid 2779 . . 3 (𝐾 ∈ 𝑋 β†’ 𝐢 = ((𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)}))β€˜π‘Š))
7 fveq2 6891 . . . . . . . 8 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = ((DVecHβ€˜πΎ)β€˜π‘Š))
8 lcdval.u . . . . . . . 8 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
97, 8eqtr4di 2785 . . . . . . 7 (𝑀 = π‘Š β†’ ((DVecHβ€˜πΎ)β€˜π‘€) = π‘ˆ)
109fveq2d 6895 . . . . . 6 (𝑀 = π‘Š β†’ (LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LDualβ€˜π‘ˆ))
11 lcdval.d . . . . . 6 𝐷 = (LDualβ€˜π‘ˆ)
1210, 11eqtr4di 2785 . . . . 5 (𝑀 = π‘Š β†’ (LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝐷)
139fveq2d 6895 . . . . . . 7 (𝑀 = π‘Š β†’ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LFnlβ€˜π‘ˆ))
14 lcdval.f . . . . . . 7 𝐹 = (LFnlβ€˜π‘ˆ)
1513, 14eqtr4di 2785 . . . . . 6 (𝑀 = π‘Š β†’ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝐹)
16 fveq2 6891 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((ocHβ€˜πΎ)β€˜π‘€) = ((ocHβ€˜πΎ)β€˜π‘Š))
17 lcdval.o . . . . . . . . 9 βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
1816, 17eqtr4di 2785 . . . . . . . 8 (𝑀 = π‘Š β†’ ((ocHβ€˜πΎ)β€˜π‘€) = βŠ₯ )
199fveq2d 6895 . . . . . . . . . . 11 (𝑀 = π‘Š β†’ (LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = (LKerβ€˜π‘ˆ))
20 lcdval.l . . . . . . . . . . 11 𝐿 = (LKerβ€˜π‘ˆ)
2119, 20eqtr4di 2785 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) = 𝐿)
2221fveq1d 6893 . . . . . . . . 9 (𝑀 = π‘Š β†’ ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) = (πΏβ€˜π‘“))
2318, 22fveq12d 6898 . . . . . . . 8 (𝑀 = π‘Š β†’ (((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)) = ( βŠ₯ β€˜(πΏβ€˜π‘“)))
2418, 23fveq12d 6898 . . . . . . 7 (𝑀 = π‘Š β†’ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))))
2524, 22eqeq12d 2743 . . . . . 6 (𝑀 = π‘Š β†’ ((((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“) ↔ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)))
2615, 25rabeqbidv 3444 . . . . 5 (𝑀 = π‘Š β†’ {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)} = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)})
2712, 26oveq12d 7432 . . . 4 (𝑀 = π‘Š β†’ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)}) = (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}))
28 eqid 2727 . . . 4 (𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)})) = (𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)}))
29 ovex 7447 . . . 4 (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}) ∈ V
3027, 28, 29fvmpt 6999 . . 3 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ ((LDualβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) β†Ύs {𝑓 ∈ (LFnlβ€˜((DVecHβ€˜πΎ)β€˜π‘€)) ∣ (((ocHβ€˜πΎ)β€˜π‘€)β€˜(((ocHβ€˜πΎ)β€˜π‘€)β€˜((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“))) = ((LKerβ€˜((DVecHβ€˜πΎ)β€˜π‘€))β€˜π‘“)}))β€˜π‘Š) = (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}))
316, 30sylan9eq 2787 . 2 ((𝐾 ∈ 𝑋 ∧ π‘Š ∈ 𝐻) β†’ 𝐢 = (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}))
321, 31syl 17 1 (πœ‘ β†’ 𝐢 = (𝐷 β†Ύs {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099  {crab 3427   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414   β†Ύs cress 17200  LFnlclfn 38466  LKerclk 38494  LDualcld 38532  LHypclh 39394  DVecHcdvh 40488  ocHcoch 40757  LCDualclcd 40996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-lcdual 40997
This theorem is referenced by:  lcdval2  41000  lcdlvec  41001  lcdvadd  41007  lcdsca  41009  lcdvs  41013  lcd0v  41021  lcdlsp  41031
  Copyright terms: Public domain W3C validator