Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval Structured version   Visualization version   GIF version

Theorem lcdval 39603
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h 𝐻 = (LHyp‘𝐾)
lcdval.o = ((ocH‘𝐾)‘𝑊)
lcdval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdval.f 𝐹 = (LFnl‘𝑈)
lcdval.l 𝐿 = (LKer‘𝑈)
lcdval.d 𝐷 = (LDual‘𝑈)
lcdval.k (𝜑 → (𝐾𝑋𝑊𝐻))
Assertion
Ref Expression
lcdval (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
Distinct variable groups:   𝑓,𝐾   𝑓,𝐹   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝐷(𝑓)   𝑈(𝑓)   𝐻(𝑓)   𝐿(𝑓)   (𝑓)   𝑋(𝑓)

Proof of Theorem lcdval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lcdval.k . 2 (𝜑 → (𝐾𝑋𝑊𝐻))
2 lcdval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 lcdval.h . . . . . 6 𝐻 = (LHyp‘𝐾)
43lcdfval 39602 . . . . 5 (𝐾𝑋 → (LCDual‘𝐾) = (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})))
54fveq1d 6776 . . . 4 (𝐾𝑋 → ((LCDual‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊))
62, 5eqtrid 2790 . . 3 (𝐾𝑋𝐶 = ((𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊))
7 fveq2 6774 . . . . . . . 8 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
8 lcdval.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
97, 8eqtr4di 2796 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
109fveq2d 6778 . . . . . 6 (𝑤 = 𝑊 → (LDual‘((DVecH‘𝐾)‘𝑤)) = (LDual‘𝑈))
11 lcdval.d . . . . . 6 𝐷 = (LDual‘𝑈)
1210, 11eqtr4di 2796 . . . . 5 (𝑤 = 𝑊 → (LDual‘((DVecH‘𝐾)‘𝑤)) = 𝐷)
139fveq2d 6778 . . . . . . 7 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = (LFnl‘𝑈))
14 lcdval.f . . . . . . 7 𝐹 = (LFnl‘𝑈)
1513, 14eqtr4di 2796 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = 𝐹)
16 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
17 lcdval.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
1816, 17eqtr4di 2796 . . . . . . . 8 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = )
199fveq2d 6778 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = (LKer‘𝑈))
20 lcdval.l . . . . . . . . . . 11 𝐿 = (LKer‘𝑈)
2119, 20eqtr4di 2796 . . . . . . . . . 10 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = 𝐿)
2221fveq1d 6776 . . . . . . . . 9 (𝑤 = 𝑊 → ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) = (𝐿𝑓))
2318, 22fveq12d 6781 . . . . . . . 8 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) = ( ‘(𝐿𝑓)))
2418, 23fveq12d 6781 . . . . . . 7 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ( ‘( ‘(𝐿𝑓))))
2524, 22eqeq12d 2754 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ↔ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)))
2615, 25rabeqbidv 3420 . . . . 5 (𝑤 = 𝑊 → {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)} = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})
2712, 26oveq12d 7293 . . . 4 (𝑤 = 𝑊 → ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}) = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
28 eqid 2738 . . . 4 (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})) = (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))
29 ovex 7308 . . . 4 (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}) ∈ V
3027, 28, 29fvmpt 6875 . . 3 (𝑊𝐻 → ((𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)}))‘𝑊) = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
316, 30sylan9eq 2798 . 2 ((𝐾𝑋𝑊𝐻) → 𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
321, 31syl 17 1 (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  cmpt 5157  cfv 6433  (class class class)co 7275  s cress 16941  LFnlclfn 37071  LKerclk 37099  LDualcld 37137  LHypclh 37998  DVecHcdvh 39092  ocHcoch 39361  LCDualclcd 39600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-lcdual 39601
This theorem is referenced by:  lcdval2  39604  lcdlvec  39605  lcdvadd  39611  lcdsca  39613  lcdvs  39617  lcd0v  39625  lcdlsp  39635
  Copyright terms: Public domain W3C validator