![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdlvec | Structured version Visualization version GIF version |
Description: The dual vector space of functionals with closed kernels is a left vector space. (Contributed by NM, 14-Mar-2015.) |
Ref | Expression |
---|---|
lcdlmod.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdlmod.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdlmod.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcdlvec | ⊢ (𝜑 → 𝐶 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdlmod.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2731 | . . 3 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
3 | lcdlmod.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
4 | eqid 2731 | . . 3 ⊢ ((DVecH‘𝐾)‘𝑊) = ((DVecH‘𝐾)‘𝑊) | |
5 | eqid 2731 | . . 3 ⊢ (LFnl‘((DVecH‘𝐾)‘𝑊)) = (LFnl‘((DVecH‘𝐾)‘𝑊)) | |
6 | eqid 2731 | . . 3 ⊢ (LKer‘((DVecH‘𝐾)‘𝑊)) = (LKer‘((DVecH‘𝐾)‘𝑊)) | |
7 | eqid 2731 | . . 3 ⊢ (LDual‘((DVecH‘𝐾)‘𝑊)) = (LDual‘((DVecH‘𝐾)‘𝑊)) | |
8 | lcdlmod.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 40776 | . 2 ⊢ (𝜑 → 𝐶 = ((LDual‘((DVecH‘𝐾)‘𝑊)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)})) |
10 | 1, 4, 8 | dvhlvec 40296 | . . . 4 ⊢ (𝜑 → ((DVecH‘𝐾)‘𝑊) ∈ LVec) |
11 | 7, 10 | lduallvec 38340 | . . 3 ⊢ (𝜑 → (LDual‘((DVecH‘𝐾)‘𝑊)) ∈ LVec) |
12 | eqid 2731 | . . . 4 ⊢ (LSubSp‘(LDual‘((DVecH‘𝐾)‘𝑊))) = (LSubSp‘(LDual‘((DVecH‘𝐾)‘𝑊))) | |
13 | eqid 2731 | . . . 4 ⊢ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)} = {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)} | |
14 | 1, 4, 2, 5, 6, 7, 12, 13, 8 | lclkr 40720 | . . 3 ⊢ (𝜑 → {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)} ∈ (LSubSp‘(LDual‘((DVecH‘𝐾)‘𝑊)))) |
15 | eqid 2731 | . . . 4 ⊢ ((LDual‘((DVecH‘𝐾)‘𝑊)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)}) = ((LDual‘((DVecH‘𝐾)‘𝑊)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)}) | |
16 | 15, 12 | lsslvec 20868 | . . 3 ⊢ (((LDual‘((DVecH‘𝐾)‘𝑊)) ∈ LVec ∧ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)} ∈ (LSubSp‘(LDual‘((DVecH‘𝐾)‘𝑊)))) → ((LDual‘((DVecH‘𝐾)‘𝑊)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)}) ∈ LVec) |
17 | 11, 14, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → ((LDual‘((DVecH‘𝐾)‘𝑊)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑊)) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑊))‘𝑓)}) ∈ LVec) |
18 | 9, 17 | eqeltrd 2832 | 1 ⊢ (𝜑 → 𝐶 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 ‘cfv 6543 (class class class)co 7412 ↾s cress 17180 LSubSpclss 20690 LVecclvec 20861 LFnlclfn 38243 LKerclk 38271 LDualcld 38309 HLchlt 38536 LHypclh 39171 DVecHcdvh 40265 ocHcoch 40534 LCDualclcd 40773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38139 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18255 df-poset 18273 df-plt 18290 df-lub 18306 df-glb 18307 df-join 18308 df-meet 18309 df-p0 18385 df-p1 18386 df-lat 18392 df-clat 18459 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-submnd 18709 df-grp 18861 df-minusg 18862 df-sbg 18863 df-subg 19043 df-cntz 19226 df-oppg 19255 df-lsm 19549 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-invr 20283 df-dvr 20296 df-drng 20506 df-lmod 20620 df-lss 20691 df-lsp 20731 df-lvec 20862 df-lsatoms 38162 df-lshyp 38163 df-lcv 38205 df-lfl 38244 df-lkr 38272 df-ldual 38310 df-oposet 38362 df-ol 38364 df-oml 38365 df-covers 38452 df-ats 38453 df-atl 38484 df-cvlat 38508 df-hlat 38537 df-llines 38685 df-lplanes 38686 df-lvols 38687 df-lines 38688 df-psubsp 38690 df-pmap 38691 df-padd 38983 df-lhyp 39175 df-laut 39176 df-ldil 39291 df-ltrn 39292 df-trl 39346 df-tgrp 39930 df-tendo 39942 df-edring 39944 df-dveca 40190 df-disoa 40216 df-dvech 40266 df-dib 40326 df-dic 40360 df-dih 40416 df-doch 40535 df-djh 40582 df-lcdual 40774 |
This theorem is referenced by: lcdlmod 40779 mapdcnvatN 40853 mapdat 40854 mapdpglem18 40876 mapdpglem20 40878 mapdpglem22 40880 mapdpglem26 40885 mapdpglem27 40886 mapdpglem30 40889 mapdheq4lem 40918 mapdh6lem1N 40920 mapdh6lem2N 40921 hdmap1l6lem1 40994 hdmap1l6lem2 40995 hdmaprnlem3N 41037 hdmaprnlem3uN 41038 hdmaprnlem9N 41044 hdmap14lem2a 41054 hdmap14lem2N 41056 hdmap14lem3 41057 hdmap14lem6 41060 hdmap14lem9 41063 hgmapval0 41079 hgmapval1 41080 hgmapadd 41081 hgmapmul 41082 hgmaprnlem1N 41083 |
Copyright terms: Public domain | W3C validator |