Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdlss Structured version   Visualization version   GIF version

Theorem lcdlss 41608
Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdlss.h 𝐻 = (LHyp‘𝐾)
lcdlss.o 𝑂 = ((ocH‘𝐾)‘𝑊)
lcdlss.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdlss.s 𝑆 = (LSubSp‘𝐶)
lcdlss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdlss.f 𝐹 = (LFnl‘𝑈)
lcdlss.l 𝐿 = (LKer‘𝑈)
lcdlss.d 𝐷 = (LDual‘𝑈)
lcdlss.t 𝑇 = (LSubSp‘𝐷)
lcdlss.b 𝐵 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
lcdlss.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdlss (𝜑𝑆 = (𝑇 ∩ 𝒫 𝐵))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑓,𝐾   𝑓,𝐿   𝑓,𝑂   𝑈,𝑓   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝑆(𝑓)   𝑇(𝑓)   𝐻(𝑓)

Proof of Theorem lcdlss
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lcdlss.s . . . . . 6 𝑆 = (LSubSp‘𝐶)
2 lcdlss.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 lcdlss.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
4 lcdlss.c . . . . . . . 8 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 lcdlss.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 lcdlss.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
7 lcdlss.l . . . . . . . 8 𝐿 = (LKer‘𝑈)
8 lcdlss.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
9 lcdlss.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcdlss.b . . . . . . . 8 𝐵 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
112, 3, 4, 5, 6, 7, 8, 9, 10lcdval2 41579 . . . . . . 7 (𝜑𝐶 = (𝐷s 𝐵))
1211fveq2d 6864 . . . . . 6 (𝜑 → (LSubSp‘𝐶) = (LSubSp‘(𝐷s 𝐵)))
131, 12eqtrid 2777 . . . . 5 (𝜑𝑆 = (LSubSp‘(𝐷s 𝐵)))
1413eleq2d 2815 . . . 4 (𝜑 → (𝑢𝑆𝑢 ∈ (LSubSp‘(𝐷s 𝐵))))
152, 5, 9dvhlmod 41099 . . . . . 6 (𝜑𝑈 ∈ LMod)
168, 15lduallmod 39141 . . . . 5 (𝜑𝐷 ∈ LMod)
17 lcdlss.t . . . . . 6 𝑇 = (LSubSp‘𝐷)
182, 5, 3, 6, 7, 8, 17, 10, 9lclkr 41522 . . . . 5 (𝜑𝐵𝑇)
19 eqid 2730 . . . . . 6 (𝐷s 𝐵) = (𝐷s 𝐵)
20 eqid 2730 . . . . . 6 (LSubSp‘(𝐷s 𝐵)) = (LSubSp‘(𝐷s 𝐵))
2119, 17, 20lsslss 20873 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐵𝑇) → (𝑢 ∈ (LSubSp‘(𝐷s 𝐵)) ↔ (𝑢𝑇𝑢𝐵)))
2216, 18, 21syl2anc 584 . . . 4 (𝜑 → (𝑢 ∈ (LSubSp‘(𝐷s 𝐵)) ↔ (𝑢𝑇𝑢𝐵)))
2314, 22bitrd 279 . . 3 (𝜑 → (𝑢𝑆 ↔ (𝑢𝑇𝑢𝐵)))
24 elin 3932 . . . 4 (𝑢 ∈ (𝑇 ∩ 𝒫 𝐵) ↔ (𝑢𝑇𝑢 ∈ 𝒫 𝐵))
25 velpw 4570 . . . . 5 (𝑢 ∈ 𝒫 𝐵𝑢𝐵)
2625anbi2i 623 . . . 4 ((𝑢𝑇𝑢 ∈ 𝒫 𝐵) ↔ (𝑢𝑇𝑢𝐵))
2724, 26bitr2i 276 . . 3 ((𝑢𝑇𝑢𝐵) ↔ 𝑢 ∈ (𝑇 ∩ 𝒫 𝐵))
2823, 27bitrdi 287 . 2 (𝜑 → (𝑢𝑆𝑢 ∈ (𝑇 ∩ 𝒫 𝐵)))
2928eqrdv 2728 1 (𝜑𝑆 = (𝑇 ∩ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  cin 3915  wss 3916  𝒫 cpw 4565  cfv 6513  (class class class)co 7389  s cress 17206  LModclmod 20772  LSubSpclss 20843  LFnlclfn 39045  LKerclk 39073  LDualcld 39111  HLchlt 39338  LHypclh 39973  DVecHcdvh 41067  ocHcoch 41336  LCDualclcd 41575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-riotaBAD 38941
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17410  df-mre 17553  df-mrc 17554  df-acs 17556  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lvec 21016  df-lsatoms 38964  df-lshyp 38965  df-lcv 39007  df-lfl 39046  df-lkr 39074  df-ldual 39112  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-tgrp 40732  df-tendo 40744  df-edring 40746  df-dveca 40992  df-disoa 41018  df-dvech 41068  df-dib 41128  df-dic 41162  df-dih 41218  df-doch 41337  df-djh 41384  df-lcdual 41576
This theorem is referenced by:  lcdlss2N  41609  mapdrn2  41640
  Copyright terms: Public domain W3C validator