Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdlss Structured version   Visualization version   GIF version

Theorem lcdlss 41657
Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdlss.h 𝐻 = (LHyp‘𝐾)
lcdlss.o 𝑂 = ((ocH‘𝐾)‘𝑊)
lcdlss.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdlss.s 𝑆 = (LSubSp‘𝐶)
lcdlss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdlss.f 𝐹 = (LFnl‘𝑈)
lcdlss.l 𝐿 = (LKer‘𝑈)
lcdlss.d 𝐷 = (LDual‘𝑈)
lcdlss.t 𝑇 = (LSubSp‘𝐷)
lcdlss.b 𝐵 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
lcdlss.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdlss (𝜑𝑆 = (𝑇 ∩ 𝒫 𝐵))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐹   𝑓,𝐾   𝑓,𝐿   𝑓,𝑂   𝑈,𝑓   𝑓,𝑊
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)   𝑆(𝑓)   𝑇(𝑓)   𝐻(𝑓)

Proof of Theorem lcdlss
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lcdlss.s . . . . . 6 𝑆 = (LSubSp‘𝐶)
2 lcdlss.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 lcdlss.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
4 lcdlss.c . . . . . . . 8 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 lcdlss.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 lcdlss.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
7 lcdlss.l . . . . . . . 8 𝐿 = (LKer‘𝑈)
8 lcdlss.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
9 lcdlss.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcdlss.b . . . . . . . 8 𝐵 = {𝑓𝐹 ∣ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)}
112, 3, 4, 5, 6, 7, 8, 9, 10lcdval2 41628 . . . . . . 7 (𝜑𝐶 = (𝐷s 𝐵))
1211fveq2d 6826 . . . . . 6 (𝜑 → (LSubSp‘𝐶) = (LSubSp‘(𝐷s 𝐵)))
131, 12eqtrid 2778 . . . . 5 (𝜑𝑆 = (LSubSp‘(𝐷s 𝐵)))
1413eleq2d 2817 . . . 4 (𝜑 → (𝑢𝑆𝑢 ∈ (LSubSp‘(𝐷s 𝐵))))
152, 5, 9dvhlmod 41148 . . . . . 6 (𝜑𝑈 ∈ LMod)
168, 15lduallmod 39191 . . . . 5 (𝜑𝐷 ∈ LMod)
17 lcdlss.t . . . . . 6 𝑇 = (LSubSp‘𝐷)
182, 5, 3, 6, 7, 8, 17, 10, 9lclkr 41571 . . . . 5 (𝜑𝐵𝑇)
19 eqid 2731 . . . . . 6 (𝐷s 𝐵) = (𝐷s 𝐵)
20 eqid 2731 . . . . . 6 (LSubSp‘(𝐷s 𝐵)) = (LSubSp‘(𝐷s 𝐵))
2119, 17, 20lsslss 20892 . . . . 5 ((𝐷 ∈ LMod ∧ 𝐵𝑇) → (𝑢 ∈ (LSubSp‘(𝐷s 𝐵)) ↔ (𝑢𝑇𝑢𝐵)))
2216, 18, 21syl2anc 584 . . . 4 (𝜑 → (𝑢 ∈ (LSubSp‘(𝐷s 𝐵)) ↔ (𝑢𝑇𝑢𝐵)))
2314, 22bitrd 279 . . 3 (𝜑 → (𝑢𝑆 ↔ (𝑢𝑇𝑢𝐵)))
24 elin 3918 . . . 4 (𝑢 ∈ (𝑇 ∩ 𝒫 𝐵) ↔ (𝑢𝑇𝑢 ∈ 𝒫 𝐵))
25 velpw 4555 . . . . 5 (𝑢 ∈ 𝒫 𝐵𝑢𝐵)
2625anbi2i 623 . . . 4 ((𝑢𝑇𝑢 ∈ 𝒫 𝐵) ↔ (𝑢𝑇𝑢𝐵))
2724, 26bitr2i 276 . . 3 ((𝑢𝑇𝑢𝐵) ↔ 𝑢 ∈ (𝑇 ∩ 𝒫 𝐵))
2823, 27bitrdi 287 . 2 (𝜑 → (𝑢𝑆𝑢 ∈ (𝑇 ∩ 𝒫 𝐵)))
2928eqrdv 2729 1 (𝜑𝑆 = (𝑇 ∩ 𝒫 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cin 3901  wss 3902  𝒫 cpw 4550  cfv 6481  (class class class)co 7346  s cress 17138  LModclmod 20791  LSubSpclss 20862  LFnlclfn 39095  LKerclk 39123  LDualcld 39161  HLchlt 39388  LHypclh 40022  DVecHcdvh 41116  ocHcoch 41385  LCDualclcd 41624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-0g 17342  df-mre 17485  df-mrc 17486  df-acs 17488  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-cntz 19227  df-oppg 19256  df-lsm 19546  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20426  df-rlreg 20607  df-domn 20608  df-drng 20644  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lvec 21035  df-lsatoms 39014  df-lshyp 39015  df-lcv 39057  df-lfl 39096  df-lkr 39124  df-ldual 39162  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197  df-tgrp 40781  df-tendo 40793  df-edring 40795  df-dveca 41041  df-disoa 41067  df-dvech 41117  df-dib 41177  df-dic 41211  df-dih 41267  df-doch 41386  df-djh 41433  df-lcdual 41625
This theorem is referenced by:  lcdlss2N  41658  mapdrn2  41689
  Copyright terms: Public domain W3C validator