Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvbase | Structured version Visualization version GIF version |
Description: Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.) |
Ref | Expression |
---|---|
lcdvbase.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdvbase.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lcdvbase.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdvbase.v | ⊢ 𝑉 = (Base‘𝐶) |
lcdvbase.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdvbase.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcdvbase.l | ⊢ 𝐿 = (LKer‘𝑈) |
lcdvbase.b | ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lcdvbase.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcdvbase | ⊢ (𝜑 → 𝑉 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvbase.v | . . 3 ⊢ 𝑉 = (Base‘𝐶) | |
2 | lcdvbase.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | lcdvbase.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
4 | lcdvbase.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
5 | lcdvbase.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | lcdvbase.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑈) | |
7 | lcdvbase.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑈) | |
8 | eqid 2758 | . . . . 5 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
9 | lcdvbase.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | lcdvbase.b | . . . . 5 ⊢ 𝐵 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | lcdval2 39188 | . . . 4 ⊢ (𝜑 → 𝐶 = ((LDual‘𝑈) ↾s 𝐵)) |
12 | 11 | fveq2d 6662 | . . 3 ⊢ (𝜑 → (Base‘𝐶) = (Base‘((LDual‘𝑈) ↾s 𝐵))) |
13 | 1, 12 | syl5eq 2805 | . 2 ⊢ (𝜑 → 𝑉 = (Base‘((LDual‘𝑈) ↾s 𝐵))) |
14 | ssrab2 3984 | . . . . 5 ⊢ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⊆ 𝐹 | |
15 | 10, 14 | eqsstri 3926 | . . . 4 ⊢ 𝐵 ⊆ 𝐹 |
16 | eqid 2758 | . . . . 5 ⊢ (Base‘(LDual‘𝑈)) = (Base‘(LDual‘𝑈)) | |
17 | 2, 5, 9 | dvhlmod 38708 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
18 | 6, 8, 16, 17 | ldualvbase 36724 | . . . 4 ⊢ (𝜑 → (Base‘(LDual‘𝑈)) = 𝐹) |
19 | 15, 18 | sseqtrrid 3945 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ (Base‘(LDual‘𝑈))) |
20 | eqid 2758 | . . . 4 ⊢ ((LDual‘𝑈) ↾s 𝐵) = ((LDual‘𝑈) ↾s 𝐵) | |
21 | 20, 16 | ressbas2 16613 | . . 3 ⊢ (𝐵 ⊆ (Base‘(LDual‘𝑈)) → 𝐵 = (Base‘((LDual‘𝑈) ↾s 𝐵))) |
22 | 19, 21 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 = (Base‘((LDual‘𝑈) ↾s 𝐵))) |
23 | 13, 22 | eqtr4d 2796 | 1 ⊢ (𝜑 → 𝑉 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 ⊆ wss 3858 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 ↾s cress 16542 LModclmod 19702 LFnlclfn 36655 LKerclk 36683 LDualcld 36721 HLchlt 36948 LHypclh 37582 DVecHcdvh 38676 ocHcoch 38945 LCDualclcd 39184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-riotaBAD 36551 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-tpos 7902 df-undef 7949 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-0g 16773 df-proset 17604 df-poset 17622 df-plt 17634 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-p0 17715 df-p1 17716 df-lat 17722 df-clat 17784 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-mgp 19308 df-ur 19320 df-ring 19367 df-oppr 19444 df-dvdsr 19462 df-unit 19463 df-invr 19493 df-dvr 19504 df-drng 19572 df-lmod 19704 df-lvec 19943 df-ldual 36722 df-oposet 36774 df-ol 36776 df-oml 36777 df-covers 36864 df-ats 36865 df-atl 36896 df-cvlat 36920 df-hlat 36949 df-llines 37096 df-lplanes 37097 df-lvols 37098 df-lines 37099 df-psubsp 37101 df-pmap 37102 df-padd 37394 df-lhyp 37586 df-laut 37587 df-ldil 37702 df-ltrn 37703 df-trl 37757 df-tendo 38353 df-edring 38355 df-dvech 38677 df-lcdual 39185 |
This theorem is referenced by: lcdvbasess 39192 lcdlss2N 39218 lcdlsp 39219 hvmap1o2 39363 |
Copyright terms: Public domain | W3C validator |