| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfnf | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfnf | ⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellnfn 31864 | . 2 ⊢ (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 ·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑇‘𝑦)) + (𝑇‘𝑧)))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 + caddc 11132 · cmul 11134 ℋchba 30900 +ℎ cva 30901 ·ℎ csm 30902 LinFnclf 30935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-hilex 30980 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-lnfn 31829 |
| This theorem is referenced by: nmfn0 31968 lnfnfi 32022 rnbra 32088 |
| Copyright terms: Public domain | W3C validator |