| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfnfi | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
| Ref | Expression |
|---|---|
| lnfnfi | ⊢ 𝑇: ℋ⟶ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | . 2 ⊢ 𝑇 ∈ LinFn | |
| 2 | lnfnf 31820 | . 2 ⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6510 ℂcc 11073 ℋchba 30855 LinFnclf 30890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-lnfn 31784 |
| This theorem is referenced by: lnfn0i 31978 lnfnaddi 31979 lnfnmuli 31980 lnfnsubi 31982 nmbdfnlbi 31985 nmcfnexi 31987 nmcfnlbi 31988 lnfnconi 31991 nlelshi 31996 nlelchi 31997 riesz3i 31998 riesz4i 31999 |
| Copyright terms: Public domain | W3C validator |