Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnfi Structured version   Visualization version   GIF version

Theorem lnfnfi 29822
 Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnfi 𝑇: ℋ⟶ℂ

Proof of Theorem lnfnfi
StepHypRef Expression
1 lnfnl.1 . 2 𝑇 ∈ LinFn
2 lnfnf 29665 . 2 (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ)
31, 2ax-mp 5 1 𝑇: ℋ⟶ℂ
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2114  ⟶wf 6330  ℂcc 10524   ℋchba 28700  LinFnclf 28735 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-hilex 28780 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-map 8395  df-lnfn 29629 This theorem is referenced by:  lnfn0i  29823  lnfnaddi  29824  lnfnmuli  29825  lnfnsubi  29827  nmbdfnlbi  29830  nmcfnexi  29832  nmcfnlbi  29833  lnfnconi  29836  nlelshi  29841  nlelchi  29842  riesz3i  29843  riesz4i  29844
 Copyright terms: Public domain W3C validator