| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfnfi | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
| Ref | Expression |
|---|---|
| lnfnfi | ⊢ 𝑇: ℋ⟶ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | . 2 ⊢ 𝑇 ∈ LinFn | |
| 2 | lnfnf 31903 | . 2 ⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ⟶wf 6557 ℂcc 11153 ℋchba 30938 LinFnclf 30973 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-hilex 31018 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-lnfn 31867 |
| This theorem is referenced by: lnfn0i 32061 lnfnaddi 32062 lnfnmuli 32063 lnfnsubi 32065 nmbdfnlbi 32068 nmcfnexi 32070 nmcfnlbi 32071 lnfnconi 32074 nlelshi 32079 nlelchi 32080 riesz3i 32081 riesz4i 32082 |
| Copyright terms: Public domain | W3C validator |