| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfnfi | Structured version Visualization version GIF version | ||
| Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
| Ref | Expression |
|---|---|
| lnfnfi | ⊢ 𝑇: ℋ⟶ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | . 2 ⊢ 𝑇 ∈ LinFn | |
| 2 | lnfnf 31813 | . 2 ⊢ (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝑇: ℋ⟶ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⟶wf 6507 ℂcc 11066 ℋchba 30848 LinFnclf 30883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-lnfn 31777 |
| This theorem is referenced by: lnfn0i 31971 lnfnaddi 31972 lnfnmuli 31973 lnfnsubi 31975 nmbdfnlbi 31978 nmcfnexi 31980 nmcfnlbi 31981 lnfnconi 31984 nlelshi 31989 nlelchi 31990 riesz3i 31991 riesz4i 31992 |
| Copyright terms: Public domain | W3C validator |