HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnfi Structured version   Visualization version   GIF version

Theorem lnfnfi 32022
Description: A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnfi 𝑇: ℋ⟶ℂ

Proof of Theorem lnfnfi
StepHypRef Expression
1 lnfnl.1 . 2 𝑇 ∈ LinFn
2 lnfnf 31865 . 2 (𝑇 ∈ LinFn → 𝑇: ℋ⟶ℂ)
31, 2ax-mp 5 1 𝑇: ℋ⟶ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wf 6527  cc 11127  chba 30900  LinFnclf 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-hilex 30980
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-lnfn 31829
This theorem is referenced by:  lnfn0i  32023  lnfnaddi  32024  lnfnmuli  32025  lnfnsubi  32027  nmbdfnlbi  32030  nmcfnexi  32032  nmcfnlbi  32033  lnfnconi  32036  nlelshi  32041  nlelchi  32042  riesz3i  32043  riesz4i  32044
  Copyright terms: Public domain W3C validator