| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > rnbra | Structured version Visualization version GIF version | ||
| Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rnbra | ⊢ ran bra = (LinFn ∩ ContFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncnbd 32039 | . . . 4 ⊢ (𝑡 ∈ LinFn → (𝑡 ∈ ContFn ↔ (normfn‘𝑡) ∈ ℝ)) | |
| 2 | 1 | pm5.32i 574 | . . 3 ⊢ ((𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn) ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 3 | elin 3914 | . . 3 ⊢ (𝑡 ∈ (LinFn ∩ ContFn) ↔ (𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn)) | |
| 4 | ax-hilex 30981 | . . . . . . 7 ⊢ ℋ ∈ V | |
| 5 | 4 | mptex 7163 | . . . . . 6 ⊢ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥)) ∈ V |
| 6 | df-bra 31832 | . . . . . 6 ⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | |
| 7 | 5, 6 | fnmpti 6629 | . . . . 5 ⊢ bra Fn ℋ |
| 8 | fvelrnb 6888 | . . . . 5 ⊢ (bra Fn ℋ → (𝑡 ∈ ran bra ↔ ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑡 ∈ ran bra ↔ ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡) |
| 10 | bralnfn 31930 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (bra‘𝑥) ∈ LinFn) | |
| 11 | brabn 32088 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (normfn‘(bra‘𝑥)) ∈ ℝ) | |
| 12 | 10, 11 | jca 511 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((bra‘𝑥) ∈ LinFn ∧ (normfn‘(bra‘𝑥)) ∈ ℝ)) |
| 13 | eleq1 2821 | . . . . . . . 8 ⊢ ((bra‘𝑥) = 𝑡 → ((bra‘𝑥) ∈ LinFn ↔ 𝑡 ∈ LinFn)) | |
| 14 | fveq2 6828 | . . . . . . . . 9 ⊢ ((bra‘𝑥) = 𝑡 → (normfn‘(bra‘𝑥)) = (normfn‘𝑡)) | |
| 15 | 14 | eleq1d 2818 | . . . . . . . 8 ⊢ ((bra‘𝑥) = 𝑡 → ((normfn‘(bra‘𝑥)) ∈ ℝ ↔ (normfn‘𝑡) ∈ ℝ)) |
| 16 | 13, 15 | anbi12d 632 | . . . . . . 7 ⊢ ((bra‘𝑥) = 𝑡 → (((bra‘𝑥) ∈ LinFn ∧ (normfn‘(bra‘𝑥)) ∈ ℝ) ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ))) |
| 17 | 12, 16 | syl5ibcom 245 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((bra‘𝑥) = 𝑡 → (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ))) |
| 18 | 17 | rexlimiv 3127 | . . . . 5 ⊢ (∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡 → (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 19 | riesz1 32047 | . . . . . . 7 ⊢ (𝑡 ∈ LinFn → ((normfn‘𝑡) ∈ ℝ ↔ ∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥))) | |
| 20 | 19 | biimpa 476 | . . . . . 6 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → ∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥)) |
| 21 | braval 31926 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥)) | |
| 22 | eqtr3 2755 | . . . . . . . . . . . 12 ⊢ ((((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥) ∧ (𝑡‘𝑦) = (𝑦 ·ih 𝑥)) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦)) | |
| 23 | 22 | ex 412 | . . . . . . . . . . 11 ⊢ (((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥) → ((𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 24 | 21, 23 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 25 | 24 | ralimdva 3145 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 26 | 25 | adantl 481 | . . . . . . . 8 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 27 | brafn 31929 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (bra‘𝑥): ℋ⟶ℂ) | |
| 28 | lnfnf 31866 | . . . . . . . . . 10 ⊢ (𝑡 ∈ LinFn → 𝑡: ℋ⟶ℂ) | |
| 29 | 28 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → 𝑡: ℋ⟶ℂ) |
| 30 | ffn 6656 | . . . . . . . . . 10 ⊢ ((bra‘𝑥): ℋ⟶ℂ → (bra‘𝑥) Fn ℋ) | |
| 31 | ffn 6656 | . . . . . . . . . 10 ⊢ (𝑡: ℋ⟶ℂ → 𝑡 Fn ℋ) | |
| 32 | eqfnfv 6970 | . . . . . . . . . 10 ⊢ (((bra‘𝑥) Fn ℋ ∧ 𝑡 Fn ℋ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) | |
| 33 | 30, 31, 32 | syl2an 596 | . . . . . . . . 9 ⊢ (((bra‘𝑥): ℋ⟶ℂ ∧ 𝑡: ℋ⟶ℂ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 34 | 27, 29, 33 | syl2anr 597 | . . . . . . . 8 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 35 | 26, 34 | sylibrd 259 | . . . . . . 7 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → (bra‘𝑥) = 𝑡)) |
| 36 | 35 | reximdva 3146 | . . . . . 6 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → (∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡)) |
| 37 | 20, 36 | mpd 15 | . . . . 5 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡) |
| 38 | 18, 37 | impbii 209 | . . . 4 ⊢ (∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡 ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 39 | 9, 38 | bitri 275 | . . 3 ⊢ (𝑡 ∈ ran bra ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 40 | 2, 3, 39 | 3bitr4ri 304 | . 2 ⊢ (𝑡 ∈ ran bra ↔ 𝑡 ∈ (LinFn ∩ ContFn)) |
| 41 | 40 | eqriv 2730 | 1 ⊢ ran bra = (LinFn ∩ ContFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 ↦ cmpt 5174 ran crn 5620 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 ℋchba 30901 ·ih csp 30904 normfncnmf 30933 ContFnccnfn 30935 LinFnclf 30936 bracbr 30938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 ax-hilex 30981 ax-hfvadd 30982 ax-hvcom 30983 ax-hvass 30984 ax-hv0cl 30985 ax-hvaddid 30986 ax-hfvmul 30987 ax-hvmulid 30988 ax-hvmulass 30989 ax-hvdistr1 30990 ax-hvdistr2 30991 ax-hvmul0 30992 ax-hfi 31061 ax-his1 31064 ax-his2 31065 ax-his3 31066 ax-his4 31067 ax-hcompl 31184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-sum 15596 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-cn 23143 df-cnp 23144 df-lm 23145 df-t1 23230 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cfil 25183 df-cau 25184 df-cmet 25185 df-grpo 30475 df-gid 30476 df-ginv 30477 df-gdiv 30478 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-vs 30581 df-nmcv 30582 df-ims 30583 df-dip 30683 df-ssp 30704 df-ph 30795 df-cbn 30845 df-hnorm 30950 df-hba 30951 df-hvsub 30953 df-hlim 30954 df-hcau 30955 df-sh 31189 df-ch 31203 df-oc 31234 df-ch0 31235 df-nmfn 31827 df-nlfn 31828 df-cnfn 31829 df-lnfn 31830 df-bra 31832 |
| This theorem is referenced by: bra11 32090 cnvbraval 32092 |
| Copyright terms: Public domain | W3C validator |