![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > rnbra | Structured version Visualization version GIF version |
Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnbra | β’ ran bra = (LinFn β© ContFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnfncnbd 31880 | . . . 4 β’ (π‘ β LinFn β (π‘ β ContFn β (normfnβπ‘) β β)) | |
2 | 1 | pm5.32i 574 | . . 3 β’ ((π‘ β LinFn β§ π‘ β ContFn) β (π‘ β LinFn β§ (normfnβπ‘) β β)) |
3 | elin 3963 | . . 3 β’ (π‘ β (LinFn β© ContFn) β (π‘ β LinFn β§ π‘ β ContFn)) | |
4 | ax-hilex 30822 | . . . . . . 7 β’ β β V | |
5 | 4 | mptex 7235 | . . . . . 6 β’ (π¦ β β β¦ (π¦ Β·ih π₯)) β V |
6 | df-bra 31673 | . . . . . 6 β’ bra = (π₯ β β β¦ (π¦ β β β¦ (π¦ Β·ih π₯))) | |
7 | 5, 6 | fnmpti 6698 | . . . . 5 β’ bra Fn β |
8 | fvelrnb 6959 | . . . . 5 β’ (bra Fn β β (π‘ β ran bra β βπ₯ β β (braβπ₯) = π‘)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 β’ (π‘ β ran bra β βπ₯ β β (braβπ₯) = π‘) |
10 | bralnfn 31771 | . . . . . . . 8 β’ (π₯ β β β (braβπ₯) β LinFn) | |
11 | brabn 31929 | . . . . . . . 8 β’ (π₯ β β β (normfnβ(braβπ₯)) β β) | |
12 | 10, 11 | jca 511 | . . . . . . 7 β’ (π₯ β β β ((braβπ₯) β LinFn β§ (normfnβ(braβπ₯)) β β)) |
13 | eleq1 2817 | . . . . . . . 8 β’ ((braβπ₯) = π‘ β ((braβπ₯) β LinFn β π‘ β LinFn)) | |
14 | fveq2 6897 | . . . . . . . . 9 β’ ((braβπ₯) = π‘ β (normfnβ(braβπ₯)) = (normfnβπ‘)) | |
15 | 14 | eleq1d 2814 | . . . . . . . 8 β’ ((braβπ₯) = π‘ β ((normfnβ(braβπ₯)) β β β (normfnβπ‘) β β)) |
16 | 13, 15 | anbi12d 631 | . . . . . . 7 β’ ((braβπ₯) = π‘ β (((braβπ₯) β LinFn β§ (normfnβ(braβπ₯)) β β) β (π‘ β LinFn β§ (normfnβπ‘) β β))) |
17 | 12, 16 | syl5ibcom 244 | . . . . . 6 β’ (π₯ β β β ((braβπ₯) = π‘ β (π‘ β LinFn β§ (normfnβπ‘) β β))) |
18 | 17 | rexlimiv 3145 | . . . . 5 β’ (βπ₯ β β (braβπ₯) = π‘ β (π‘ β LinFn β§ (normfnβπ‘) β β)) |
19 | riesz1 31888 | . . . . . . 7 β’ (π‘ β LinFn β ((normfnβπ‘) β β β βπ₯ β β βπ¦ β β (π‘βπ¦) = (π¦ Β·ih π₯))) | |
20 | 19 | biimpa 476 | . . . . . 6 β’ ((π‘ β LinFn β§ (normfnβπ‘) β β) β βπ₯ β β βπ¦ β β (π‘βπ¦) = (π¦ Β·ih π₯)) |
21 | braval 31767 | . . . . . . . . . . 11 β’ ((π₯ β β β§ π¦ β β) β ((braβπ₯)βπ¦) = (π¦ Β·ih π₯)) | |
22 | eqtr3 2754 | . . . . . . . . . . . 12 β’ ((((braβπ₯)βπ¦) = (π¦ Β·ih π₯) β§ (π‘βπ¦) = (π¦ Β·ih π₯)) β ((braβπ₯)βπ¦) = (π‘βπ¦)) | |
23 | 22 | ex 412 | . . . . . . . . . . 11 β’ (((braβπ₯)βπ¦) = (π¦ Β·ih π₯) β ((π‘βπ¦) = (π¦ Β·ih π₯) β ((braβπ₯)βπ¦) = (π‘βπ¦))) |
24 | 21, 23 | syl 17 | . . . . . . . . . 10 β’ ((π₯ β β β§ π¦ β β) β ((π‘βπ¦) = (π¦ Β·ih π₯) β ((braβπ₯)βπ¦) = (π‘βπ¦))) |
25 | 24 | ralimdva 3164 | . . . . . . . . 9 β’ (π₯ β β β (βπ¦ β β (π‘βπ¦) = (π¦ Β·ih π₯) β βπ¦ β β ((braβπ₯)βπ¦) = (π‘βπ¦))) |
26 | 25 | adantl 481 | . . . . . . . 8 β’ (((π‘ β LinFn β§ (normfnβπ‘) β β) β§ π₯ β β) β (βπ¦ β β (π‘βπ¦) = (π¦ Β·ih π₯) β βπ¦ β β ((braβπ₯)βπ¦) = (π‘βπ¦))) |
27 | brafn 31770 | . . . . . . . . 9 β’ (π₯ β β β (braβπ₯): ββΆβ) | |
28 | lnfnf 31707 | . . . . . . . . . 10 β’ (π‘ β LinFn β π‘: ββΆβ) | |
29 | 28 | adantr 480 | . . . . . . . . 9 β’ ((π‘ β LinFn β§ (normfnβπ‘) β β) β π‘: ββΆβ) |
30 | ffn 6722 | . . . . . . . . . 10 β’ ((braβπ₯): ββΆβ β (braβπ₯) Fn β) | |
31 | ffn 6722 | . . . . . . . . . 10 β’ (π‘: ββΆβ β π‘ Fn β) | |
32 | eqfnfv 7040 | . . . . . . . . . 10 β’ (((braβπ₯) Fn β β§ π‘ Fn β) β ((braβπ₯) = π‘ β βπ¦ β β ((braβπ₯)βπ¦) = (π‘βπ¦))) | |
33 | 30, 31, 32 | syl2an 595 | . . . . . . . . 9 β’ (((braβπ₯): ββΆβ β§ π‘: ββΆβ) β ((braβπ₯) = π‘ β βπ¦ β β ((braβπ₯)βπ¦) = (π‘βπ¦))) |
34 | 27, 29, 33 | syl2anr 596 | . . . . . . . 8 β’ (((π‘ β LinFn β§ (normfnβπ‘) β β) β§ π₯ β β) β ((braβπ₯) = π‘ β βπ¦ β β ((braβπ₯)βπ¦) = (π‘βπ¦))) |
35 | 26, 34 | sylibrd 259 | . . . . . . 7 β’ (((π‘ β LinFn β§ (normfnβπ‘) β β) β§ π₯ β β) β (βπ¦ β β (π‘βπ¦) = (π¦ Β·ih π₯) β (braβπ₯) = π‘)) |
36 | 35 | reximdva 3165 | . . . . . 6 β’ ((π‘ β LinFn β§ (normfnβπ‘) β β) β (βπ₯ β β βπ¦ β β (π‘βπ¦) = (π¦ Β·ih π₯) β βπ₯ β β (braβπ₯) = π‘)) |
37 | 20, 36 | mpd 15 | . . . . 5 β’ ((π‘ β LinFn β§ (normfnβπ‘) β β) β βπ₯ β β (braβπ₯) = π‘) |
38 | 18, 37 | impbii 208 | . . . 4 β’ (βπ₯ β β (braβπ₯) = π‘ β (π‘ β LinFn β§ (normfnβπ‘) β β)) |
39 | 9, 38 | bitri 275 | . . 3 β’ (π‘ β ran bra β (π‘ β LinFn β§ (normfnβπ‘) β β)) |
40 | 2, 3, 39 | 3bitr4ri 304 | . 2 β’ (π‘ β ran bra β π‘ β (LinFn β© ContFn)) |
41 | 40 | eqriv 2725 | 1 β’ ran bra = (LinFn β© ContFn) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βwral 3058 βwrex 3067 β© cin 3946 β¦ cmpt 5231 ran crn 5679 Fn wfn 6543 βΆwf 6544 βcfv 6548 (class class class)co 7420 βcc 11137 βcr 11138 βchba 30742 Β·ih csp 30745 normfncnmf 30774 ContFnccnfn 30776 LinFnclf 30777 bracbr 30779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cc 10459 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 ax-hilex 30822 ax-hfvadd 30823 ax-hvcom 30824 ax-hvass 30825 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 ax-hvmulass 30830 ax-hvdistr1 30831 ax-hvdistr2 30832 ax-hvmul0 30833 ax-hfi 30902 ax-his1 30905 ax-his2 30906 ax-his3 30907 ax-his4 30908 ax-hcompl 31025 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-acn 9966 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-rlim 15466 df-sum 15666 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-mulg 19024 df-cntz 19268 df-cmn 19737 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-cn 23144 df-cnp 23145 df-lm 23146 df-t1 23231 df-haus 23232 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cfil 25196 df-cau 25197 df-cmet 25198 df-grpo 30316 df-gid 30317 df-ginv 30318 df-gdiv 30319 df-ablo 30368 df-vc 30382 df-nv 30415 df-va 30418 df-ba 30419 df-sm 30420 df-0v 30421 df-vs 30422 df-nmcv 30423 df-ims 30424 df-dip 30524 df-ssp 30545 df-ph 30636 df-cbn 30686 df-hnorm 30791 df-hba 30792 df-hvsub 30794 df-hlim 30795 df-hcau 30796 df-sh 31030 df-ch 31044 df-oc 31075 df-ch0 31076 df-nmfn 31668 df-nlfn 31669 df-cnfn 31670 df-lnfn 31671 df-bra 31673 |
This theorem is referenced by: bra11 31931 cnvbraval 31933 |
Copyright terms: Public domain | W3C validator |