| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > rnbra | Structured version Visualization version GIF version | ||
| Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rnbra | ⊢ ran bra = (LinFn ∩ ContFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncnbd 32032 | . . . 4 ⊢ (𝑡 ∈ LinFn → (𝑡 ∈ ContFn ↔ (normfn‘𝑡) ∈ ℝ)) | |
| 2 | 1 | pm5.32i 574 | . . 3 ⊢ ((𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn) ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 3 | elin 3918 | . . 3 ⊢ (𝑡 ∈ (LinFn ∩ ContFn) ↔ (𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn)) | |
| 4 | ax-hilex 30974 | . . . . . . 7 ⊢ ℋ ∈ V | |
| 5 | 4 | mptex 7157 | . . . . . 6 ⊢ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥)) ∈ V |
| 6 | df-bra 31825 | . . . . . 6 ⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | |
| 7 | 5, 6 | fnmpti 6624 | . . . . 5 ⊢ bra Fn ℋ |
| 8 | fvelrnb 6882 | . . . . 5 ⊢ (bra Fn ℋ → (𝑡 ∈ ran bra ↔ ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡)) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑡 ∈ ran bra ↔ ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡) |
| 10 | bralnfn 31923 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (bra‘𝑥) ∈ LinFn) | |
| 11 | brabn 32081 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (normfn‘(bra‘𝑥)) ∈ ℝ) | |
| 12 | 10, 11 | jca 511 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((bra‘𝑥) ∈ LinFn ∧ (normfn‘(bra‘𝑥)) ∈ ℝ)) |
| 13 | eleq1 2819 | . . . . . . . 8 ⊢ ((bra‘𝑥) = 𝑡 → ((bra‘𝑥) ∈ LinFn ↔ 𝑡 ∈ LinFn)) | |
| 14 | fveq2 6822 | . . . . . . . . 9 ⊢ ((bra‘𝑥) = 𝑡 → (normfn‘(bra‘𝑥)) = (normfn‘𝑡)) | |
| 15 | 14 | eleq1d 2816 | . . . . . . . 8 ⊢ ((bra‘𝑥) = 𝑡 → ((normfn‘(bra‘𝑥)) ∈ ℝ ↔ (normfn‘𝑡) ∈ ℝ)) |
| 16 | 13, 15 | anbi12d 632 | . . . . . . 7 ⊢ ((bra‘𝑥) = 𝑡 → (((bra‘𝑥) ∈ LinFn ∧ (normfn‘(bra‘𝑥)) ∈ ℝ) ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ))) |
| 17 | 12, 16 | syl5ibcom 245 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((bra‘𝑥) = 𝑡 → (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ))) |
| 18 | 17 | rexlimiv 3126 | . . . . 5 ⊢ (∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡 → (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 19 | riesz1 32040 | . . . . . . 7 ⊢ (𝑡 ∈ LinFn → ((normfn‘𝑡) ∈ ℝ ↔ ∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥))) | |
| 20 | 19 | biimpa 476 | . . . . . 6 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → ∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥)) |
| 21 | braval 31919 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥)) | |
| 22 | eqtr3 2753 | . . . . . . . . . . . 12 ⊢ ((((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥) ∧ (𝑡‘𝑦) = (𝑦 ·ih 𝑥)) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦)) | |
| 23 | 22 | ex 412 | . . . . . . . . . . 11 ⊢ (((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥) → ((𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 24 | 21, 23 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 25 | 24 | ralimdva 3144 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 26 | 25 | adantl 481 | . . . . . . . 8 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 27 | brafn 31922 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (bra‘𝑥): ℋ⟶ℂ) | |
| 28 | lnfnf 31859 | . . . . . . . . . 10 ⊢ (𝑡 ∈ LinFn → 𝑡: ℋ⟶ℂ) | |
| 29 | 28 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → 𝑡: ℋ⟶ℂ) |
| 30 | ffn 6651 | . . . . . . . . . 10 ⊢ ((bra‘𝑥): ℋ⟶ℂ → (bra‘𝑥) Fn ℋ) | |
| 31 | ffn 6651 | . . . . . . . . . 10 ⊢ (𝑡: ℋ⟶ℂ → 𝑡 Fn ℋ) | |
| 32 | eqfnfv 6964 | . . . . . . . . . 10 ⊢ (((bra‘𝑥) Fn ℋ ∧ 𝑡 Fn ℋ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) | |
| 33 | 30, 31, 32 | syl2an 596 | . . . . . . . . 9 ⊢ (((bra‘𝑥): ℋ⟶ℂ ∧ 𝑡: ℋ⟶ℂ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 34 | 27, 29, 33 | syl2anr 597 | . . . . . . . 8 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
| 35 | 26, 34 | sylibrd 259 | . . . . . . 7 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → (bra‘𝑥) = 𝑡)) |
| 36 | 35 | reximdva 3145 | . . . . . 6 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → (∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡)) |
| 37 | 20, 36 | mpd 15 | . . . . 5 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡) |
| 38 | 18, 37 | impbii 209 | . . . 4 ⊢ (∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡 ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 39 | 9, 38 | bitri 275 | . . 3 ⊢ (𝑡 ∈ ran bra ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
| 40 | 2, 3, 39 | 3bitr4ri 304 | . 2 ⊢ (𝑡 ∈ ran bra ↔ 𝑡 ∈ (LinFn ∩ ContFn)) |
| 41 | 40 | eqriv 2728 | 1 ⊢ ran bra = (LinFn ∩ ContFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 ↦ cmpt 5172 ran crn 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 ℝcr 11002 ℋchba 30894 ·ih csp 30897 normfncnmf 30926 ContFnccnfn 30928 LinFnclf 30929 bracbr 30931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10323 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 ax-hilex 30974 ax-hfvadd 30975 ax-hvcom 30976 ax-hvass 30977 ax-hv0cl 30978 ax-hvaddid 30979 ax-hfvmul 30980 ax-hvmulid 30981 ax-hvmulass 30982 ax-hvdistr1 30983 ax-hvdistr2 30984 ax-hvmul0 30985 ax-hfi 31054 ax-his1 31057 ax-his2 31058 ax-his3 31059 ax-his4 31060 ax-hcompl 31177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-acn 9832 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-ico 13248 df-icc 13249 df-fz 13405 df-fzo 13552 df-fl 13693 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-rlim 15393 df-sum 15591 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-fbas 21286 df-fg 21287 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-cn 23140 df-cnp 23141 df-lm 23142 df-t1 23227 df-haus 23228 df-tx 23475 df-hmeo 23668 df-fil 23759 df-fm 23851 df-flim 23852 df-flf 23853 df-xms 24233 df-ms 24234 df-tms 24235 df-cfil 25180 df-cau 25181 df-cmet 25182 df-grpo 30468 df-gid 30469 df-ginv 30470 df-gdiv 30471 df-ablo 30520 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-vs 30574 df-nmcv 30575 df-ims 30576 df-dip 30676 df-ssp 30697 df-ph 30788 df-cbn 30838 df-hnorm 30943 df-hba 30944 df-hvsub 30946 df-hlim 30947 df-hcau 30948 df-sh 31182 df-ch 31196 df-oc 31227 df-ch0 31228 df-nmfn 31820 df-nlfn 31821 df-cnfn 31822 df-lnfn 31823 df-bra 31825 |
| This theorem is referenced by: bra11 32083 cnvbraval 32085 |
| Copyright terms: Public domain | W3C validator |