![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > rnbra | Structured version Visualization version GIF version |
Description: The set of bras equals the set of continuous linear functionals. (Contributed by NM, 26-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnbra | ⊢ ran bra = (LinFn ∩ ContFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnfncnbd 29441 | . . . 4 ⊢ (𝑡 ∈ LinFn → (𝑡 ∈ ContFn ↔ (normfn‘𝑡) ∈ ℝ)) | |
2 | 1 | pm5.32i 571 | . . 3 ⊢ ((𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn) ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
3 | elin 3994 | . . 3 ⊢ (𝑡 ∈ (LinFn ∩ ContFn) ↔ (𝑡 ∈ LinFn ∧ 𝑡 ∈ ContFn)) | |
4 | ax-hilex 28381 | . . . . . . 7 ⊢ ℋ ∈ V | |
5 | 4 | mptex 6715 | . . . . . 6 ⊢ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥)) ∈ V |
6 | df-bra 29234 | . . . . . 6 ⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) | |
7 | 5, 6 | fnmpti 6233 | . . . . 5 ⊢ bra Fn ℋ |
8 | fvelrnb 6468 | . . . . 5 ⊢ (bra Fn ℋ → (𝑡 ∈ ran bra ↔ ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡)) | |
9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ (𝑡 ∈ ran bra ↔ ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡) |
10 | bralnfn 29332 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (bra‘𝑥) ∈ LinFn) | |
11 | brabn 29490 | . . . . . . . 8 ⊢ (𝑥 ∈ ℋ → (normfn‘(bra‘𝑥)) ∈ ℝ) | |
12 | 10, 11 | jca 508 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((bra‘𝑥) ∈ LinFn ∧ (normfn‘(bra‘𝑥)) ∈ ℝ)) |
13 | eleq1 2866 | . . . . . . . 8 ⊢ ((bra‘𝑥) = 𝑡 → ((bra‘𝑥) ∈ LinFn ↔ 𝑡 ∈ LinFn)) | |
14 | fveq2 6411 | . . . . . . . . 9 ⊢ ((bra‘𝑥) = 𝑡 → (normfn‘(bra‘𝑥)) = (normfn‘𝑡)) | |
15 | 14 | eleq1d 2863 | . . . . . . . 8 ⊢ ((bra‘𝑥) = 𝑡 → ((normfn‘(bra‘𝑥)) ∈ ℝ ↔ (normfn‘𝑡) ∈ ℝ)) |
16 | 13, 15 | anbi12d 625 | . . . . . . 7 ⊢ ((bra‘𝑥) = 𝑡 → (((bra‘𝑥) ∈ LinFn ∧ (normfn‘(bra‘𝑥)) ∈ ℝ) ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ))) |
17 | 12, 16 | syl5ibcom 237 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((bra‘𝑥) = 𝑡 → (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ))) |
18 | 17 | rexlimiv 3208 | . . . . 5 ⊢ (∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡 → (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
19 | riesz1 29449 | . . . . . . 7 ⊢ (𝑡 ∈ LinFn → ((normfn‘𝑡) ∈ ℝ ↔ ∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥))) | |
20 | 19 | biimpa 469 | . . . . . 6 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → ∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥)) |
21 | braval 29328 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥)) | |
22 | eqtr3 2820 | . . . . . . . . . . . 12 ⊢ ((((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥) ∧ (𝑡‘𝑦) = (𝑦 ·ih 𝑥)) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦)) | |
23 | 22 | ex 402 | . . . . . . . . . . 11 ⊢ (((bra‘𝑥)‘𝑦) = (𝑦 ·ih 𝑥) → ((𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
24 | 21, 23 | syl 17 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
25 | 24 | ralimdva 3143 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
26 | 25 | adantl 474 | . . . . . . . 8 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
27 | brafn 29331 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℋ → (bra‘𝑥): ℋ⟶ℂ) | |
28 | lnfnf 29268 | . . . . . . . . . 10 ⊢ (𝑡 ∈ LinFn → 𝑡: ℋ⟶ℂ) | |
29 | 28 | adantr 473 | . . . . . . . . 9 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → 𝑡: ℋ⟶ℂ) |
30 | ffn 6256 | . . . . . . . . . 10 ⊢ ((bra‘𝑥): ℋ⟶ℂ → (bra‘𝑥) Fn ℋ) | |
31 | ffn 6256 | . . . . . . . . . 10 ⊢ (𝑡: ℋ⟶ℂ → 𝑡 Fn ℋ) | |
32 | eqfnfv 6537 | . . . . . . . . . 10 ⊢ (((bra‘𝑥) Fn ℋ ∧ 𝑡 Fn ℋ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) | |
33 | 30, 31, 32 | syl2an 590 | . . . . . . . . 9 ⊢ (((bra‘𝑥): ℋ⟶ℂ ∧ 𝑡: ℋ⟶ℂ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
34 | 27, 29, 33 | syl2anr 591 | . . . . . . . 8 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝑥) = 𝑡 ↔ ∀𝑦 ∈ ℋ ((bra‘𝑥)‘𝑦) = (𝑡‘𝑦))) |
35 | 26, 34 | sylibrd 251 | . . . . . . 7 ⊢ (((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → (bra‘𝑥) = 𝑡)) |
36 | 35 | reximdva 3197 | . . . . . 6 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → (∃𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑡‘𝑦) = (𝑦 ·ih 𝑥) → ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡)) |
37 | 20, 36 | mpd 15 | . . . . 5 ⊢ ((𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ) → ∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡) |
38 | 18, 37 | impbii 201 | . . . 4 ⊢ (∃𝑥 ∈ ℋ (bra‘𝑥) = 𝑡 ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
39 | 9, 38 | bitri 267 | . . 3 ⊢ (𝑡 ∈ ran bra ↔ (𝑡 ∈ LinFn ∧ (normfn‘𝑡) ∈ ℝ)) |
40 | 2, 3, 39 | 3bitr4ri 296 | . 2 ⊢ (𝑡 ∈ ran bra ↔ 𝑡 ∈ (LinFn ∩ ContFn)) |
41 | 40 | eqriv 2796 | 1 ⊢ ran bra = (LinFn ∩ ContFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 ∩ cin 3768 ↦ cmpt 4922 ran crn 5313 Fn wfn 6096 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 ℝcr 10223 ℋchba 28301 ·ih csp 28304 normfncnmf 28333 ContFnccnfn 28335 LinFnclf 28336 bracbr 28338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cc 9545 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 ax-hilex 28381 ax-hfvadd 28382 ax-hvcom 28383 ax-hvass 28384 ax-hv0cl 28385 ax-hvaddid 28386 ax-hfvmul 28387 ax-hvmulid 28388 ax-hvmulass 28389 ax-hvdistr1 28390 ax-hvdistr2 28391 ax-hvmul0 28392 ax-hfi 28461 ax-his1 28464 ax-his2 28465 ax-his3 28466 ax-his4 28467 ax-hcompl 28584 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-rlim 14561 df-sum 14758 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-xrs 16477 df-qtop 16482 df-imas 16483 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-mulg 17857 df-cntz 18062 df-cmn 18510 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-cn 21360 df-cnp 21361 df-lm 21362 df-t1 21447 df-haus 21448 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-xms 22453 df-ms 22454 df-tms 22455 df-cfil 23381 df-cau 23382 df-cmet 23383 df-grpo 27873 df-gid 27874 df-ginv 27875 df-gdiv 27876 df-ablo 27925 df-vc 27939 df-nv 27972 df-va 27975 df-ba 27976 df-sm 27977 df-0v 27978 df-vs 27979 df-nmcv 27980 df-ims 27981 df-dip 28081 df-ssp 28102 df-ph 28193 df-cbn 28244 df-hnorm 28350 df-hba 28351 df-hvsub 28353 df-hlim 28354 df-hcau 28355 df-sh 28589 df-ch 28603 df-oc 28634 df-ch0 28635 df-nmfn 29229 df-nlfn 29230 df-cnfn 29231 df-lnfn 29232 df-bra 29234 |
This theorem is referenced by: bra11 29492 cnvbraval 29494 |
Copyright terms: Public domain | W3C validator |