Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpne0 Structured version   Visualization version   GIF version

Theorem lshpne0 38972
Description: The member of the span in the hyperplane definition does not belong to the hyperplane. (Contributed by NM, 14-Jul-2014.) (Proof shortened by AV, 19-Jul-2022.)
Hypotheses
Ref Expression
lshpne0.v 𝑉 = (Base‘𝑊)
lshpne0.n 𝑁 = (LSpan‘𝑊)
lshpne0.p = (LSSum‘𝑊)
lshpne0.h 𝐻 = (LSHyp‘𝑊)
lshpne0.o 0 = (0g𝑊)
lshpne0.w (𝜑𝑊 ∈ LMod)
lshpne0.u (𝜑𝑈𝐻)
lshpne0.x (𝜑𝑋𝑉)
lshpne0.e (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
Assertion
Ref Expression
lshpne0 (𝜑𝑋0 )

Proof of Theorem lshpne0
StepHypRef Expression
1 lshpne0.o . 2 0 = (0g𝑊)
2 eqid 2729 . 2 (LSubSp‘𝑊) = (LSubSp‘𝑊)
3 lshpne0.w . 2 (𝜑𝑊 ∈ LMod)
4 lshpne0.h . . 3 𝐻 = (LSHyp‘𝑊)
5 lshpne0.u . . 3 (𝜑𝑈𝐻)
62, 4, 3, 5lshplss 38967 . 2 (𝜑𝑈 ∈ (LSubSp‘𝑊))
7 lshpne0.v . . 3 𝑉 = (Base‘𝑊)
8 lshpne0.n . . 3 𝑁 = (LSpan‘𝑊)
9 lshpne0.p . . 3 = (LSSum‘𝑊)
10 lshpne0.x . . 3 (𝜑𝑋𝑉)
11 lshpne0.e . . 3 (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)
127, 8, 9, 4, 3, 5, 10, 11lshpnel 38969 . 2 (𝜑 → ¬ 𝑋𝑈)
131, 2, 3, 6, 12lssvneln0 20890 1 (𝜑𝑋0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17155  0gc0g 17378  LSSumclsm 19548  LModclmod 20798  LSubSpclss 20869  LSpanclspn 20909  LSHypclsh 38961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-lsm 19550  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lshyp 38963
This theorem is referenced by:  lshpsmreu  39095  lshpkrlem5  39100
  Copyright terms: Public domain W3C validator