![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne0 | Structured version Visualization version GIF version |
Description: The member of the span in the hyperplane definition does not belong to the hyperplane. (Contributed by NM, 14-Jul-2014.) (Proof shortened by AV, 19-Jul-2022.) |
Ref | Expression |
---|---|
lshpne0.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpne0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpne0.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpne0.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpne0.o | ⊢ 0 = (0g‘𝑊) |
lshpne0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshpne0.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpne0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lshpne0.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) |
Ref | Expression |
---|---|
lshpne0 | ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpne0.o | . 2 ⊢ 0 = (0g‘𝑊) | |
2 | eqid 2797 | . 2 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | lshpne0.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | lshpne0.h | . . 3 ⊢ 𝐻 = (LSHyp‘𝑊) | |
5 | lshpne0.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
6 | 2, 4, 3, 5 | lshplss 34994 | . 2 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
7 | lshpne0.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lshpne0.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | lshpne0.p | . . 3 ⊢ ⊕ = (LSSum‘𝑊) | |
10 | lshpne0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
11 | lshpne0.e | . . 3 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) | |
12 | 7, 8, 9, 4, 3, 5, 10, 11 | lshpnel 34996 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
13 | 1, 2, 3, 6, 12 | lssvneln0 19267 | 1 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 {csn 4366 ‘cfv 6099 (class class class)co 6876 Basecbs 16181 0gc0g 16412 LSSumclsm 18359 LModclmod 19178 LSubSpclss 19247 LSpanclspn 19289 LSHypclsh 34988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-ress 16189 df-plusg 16277 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-submnd 17648 df-grp 17738 df-minusg 17739 df-sbg 17740 df-subg 17901 df-lsm 18361 df-mgp 18803 df-ur 18815 df-ring 18862 df-lmod 19180 df-lss 19248 df-lsp 19290 df-lshyp 34990 |
This theorem is referenced by: lshpsmreu 35122 lshpkrlem5 35127 |
Copyright terms: Public domain | W3C validator |