Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkr Structured version   Visualization version   GIF version

Theorem lshpkr 37790
Description: The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkr.v 𝑉 = (Base‘𝑊)
lshpkr.a + = (+g𝑊)
lshpkr.n 𝑁 = (LSpan‘𝑊)
lshpkr.p = (LSSum‘𝑊)
lshpkr.h 𝐻 = (LSHyp‘𝑊)
lshpkr.w (𝜑𝑊 ∈ LVec)
lshpkr.u (𝜑𝑈𝐻)
lshpkr.z (𝜑𝑍𝑉)
lshpkr.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkr.d 𝐷 = (Scalar‘𝑊)
lshpkr.k 𝐾 = (Base‘𝐷)
lshpkr.t · = ( ·𝑠𝑊)
lshpkr.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
lshpkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
lshpkr (𝜑 → (𝐿𝐺) = 𝑈)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   𝑈,𝑘,𝑥,𝑦   𝐷,𝑘   · ,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝐿(𝑥,𝑦,𝑘)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)

Proof of Theorem lshpkr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpkr.v . . . . 5 𝑉 = (Base‘𝑊)
2 eqid 2731 . . . . 5 (LFnl‘𝑊) = (LFnl‘𝑊)
3 lshpkr.l . . . . 5 𝐿 = (LKer‘𝑊)
4 lshpkr.w . . . . . 6 (𝜑𝑊 ∈ LVec)
5 lveclmod 20666 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
7 lshpkr.a . . . . . 6 + = (+g𝑊)
8 lshpkr.n . . . . . 6 𝑁 = (LSpan‘𝑊)
9 lshpkr.p . . . . . 6 = (LSSum‘𝑊)
10 lshpkr.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
11 lshpkr.u . . . . . 6 (𝜑𝑈𝐻)
12 lshpkr.z . . . . . 6 (𝜑𝑍𝑉)
13 lshpkr.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
14 lshpkr.d . . . . . 6 𝐷 = (Scalar‘𝑊)
15 lshpkr.k . . . . . 6 𝐾 = (Base‘𝐷)
16 lshpkr.t . . . . . 6 · = ( ·𝑠𝑊)
17 lshpkr.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
181, 7, 8, 9, 10, 4, 11, 12, 13, 14, 15, 16, 17, 2lshpkrcl 37789 . . . . 5 (𝜑𝐺 ∈ (LFnl‘𝑊))
191, 2, 3, 6, 18lkrssv 37769 . . . 4 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
2019sseld 3977 . . 3 (𝜑 → (𝑣 ∈ (𝐿𝐺) → 𝑣𝑉))
21 eqid 2731 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2221, 10, 6, 11lshplss 37654 . . . . 5 (𝜑𝑈 ∈ (LSubSp‘𝑊))
231, 21lssel 20497 . . . . 5 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑣𝑈) → 𝑣𝑉)
2422, 23sylan 580 . . . 4 ((𝜑𝑣𝑈) → 𝑣𝑉)
2524ex 413 . . 3 (𝜑 → (𝑣𝑈𝑣𝑉))
26 eqid 2731 . . . . . . . 8 (0g𝐷) = (0g𝐷)
271, 14, 26, 2, 3ellkr 37762 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = (0g𝐷))))
284, 18, 27syl2anc 584 . . . . . 6 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = (0g𝐷))))
2928baibd 540 . . . . 5 ((𝜑𝑣𝑉) → (𝑣 ∈ (𝐿𝐺) ↔ (𝐺𝑣) = (0g𝐷)))
304adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
3111adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → 𝑈𝐻)
3212adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → 𝑍𝑉)
33 simpr 485 . . . . . 6 ((𝜑𝑣𝑉) → 𝑣𝑉)
3413adantr 481 . . . . . 6 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
351, 7, 8, 9, 10, 30, 31, 32, 33, 34, 14, 15, 16, 26, 17lshpkrlem1 37783 . . . . 5 ((𝜑𝑣𝑉) → (𝑣𝑈 ↔ (𝐺𝑣) = (0g𝐷)))
3629, 35bitr4d 281 . . . 4 ((𝜑𝑣𝑉) → (𝑣 ∈ (𝐿𝐺) ↔ 𝑣𝑈))
3736ex 413 . . 3 (𝜑 → (𝑣𝑉 → (𝑣 ∈ (𝐿𝐺) ↔ 𝑣𝑈)))
3820, 25, 37pm5.21ndd 380 . 2 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ 𝑣𝑈))
3938eqrdv 2729 1 (𝜑 → (𝐿𝐺) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3069  {csn 4622  cmpt 5224  cfv 6532  crio 7348  (class class class)co 7393  Basecbs 17126  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17367  LSSumclsm 19466  LModclmod 20420  LSubSpclss 20491  LSpanclspn 20531  LVecclvec 20662  LSHypclsh 37648  LFnlclfn 37730  LKerclk 37758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-cntz 19147  df-lsm 19468  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-drng 20267  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663  df-lshyp 37650  df-lfl 37731  df-lkr 37759
This theorem is referenced by:  lshpkrex  37791  dochsnkr2  40147
  Copyright terms: Public domain W3C validator