| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkr | Structured version Visualization version GIF version | ||
| Description: The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpkr.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpkr.a | ⊢ + = (+g‘𝑊) |
| lshpkr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lshpkr.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lshpkr.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpkr.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lshpkr.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| lshpkr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| lshpkr.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| lshpkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lshpkr.k | ⊢ 𝐾 = (Base‘𝐷) |
| lshpkr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lshpkr.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
| lshpkr.l | ⊢ 𝐿 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lshpkr | ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
| 3 | lshpkr.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
| 4 | lshpkr.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 5 | lveclmod 21040 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 7 | lshpkr.a | . . . . . 6 ⊢ + = (+g‘𝑊) | |
| 8 | lshpkr.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 9 | lshpkr.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
| 10 | lshpkr.h | . . . . . 6 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 11 | lshpkr.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 12 | lshpkr.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 13 | lshpkr.e | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
| 14 | lshpkr.d | . . . . . 6 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 15 | lshpkr.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐷) | |
| 16 | lshpkr.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | lshpkr.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
| 18 | 1, 7, 8, 9, 10, 4, 11, 12, 13, 14, 15, 16, 17, 2 | lshpkrcl 39214 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LFnl‘𝑊)) |
| 19 | 1, 2, 3, 6, 18 | lkrssv 39194 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
| 20 | 19 | sseld 3928 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) → 𝑣 ∈ 𝑉)) |
| 21 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 22 | 21, 10, 6, 11 | lshplss 39079 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
| 23 | 1, 21 | lssel 20870 | . . . . 5 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑉) |
| 24 | 22, 23 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑉) |
| 25 | 24 | ex 412 | . . 3 ⊢ (𝜑 → (𝑣 ∈ 𝑈 → 𝑣 ∈ 𝑉)) |
| 26 | eqid 2731 | . . . . . . . 8 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 27 | 1, 14, 26, 2, 3 | ellkr 39187 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (0g‘𝐷)))) |
| 28 | 4, 18, 27 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (0g‘𝐷)))) |
| 29 | 28 | baibd 539 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝐺‘𝑣) = (0g‘𝐷))) |
| 30 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
| 31 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
| 32 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
| 33 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
| 34 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
| 35 | 1, 7, 8, 9, 10, 30, 31, 32, 33, 34, 14, 15, 16, 26, 17 | lshpkrlem1 39208 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ 𝑈 ↔ (𝐺‘𝑣) = (0g‘𝐷))) |
| 36 | 29, 35 | bitr4d 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈)) |
| 37 | 36 | ex 412 | . . 3 ⊢ (𝜑 → (𝑣 ∈ 𝑉 → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈))) |
| 38 | 20, 25, 37 | pm5.21ndd 379 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈)) |
| 39 | 38 | eqrdv 2729 | 1 ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {csn 4573 ↦ cmpt 5170 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LSSumclsm 19546 LModclmod 20793 LSubSpclss 20864 LSpanclspn 20904 LVecclvec 21036 LSHypclsh 39073 LFnlclfn 39155 LKerclk 39183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lshyp 39075 df-lfl 39156 df-lkr 39184 |
| This theorem is referenced by: lshpkrex 39216 dochsnkr2 41571 |
| Copyright terms: Public domain | W3C validator |