Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkr Structured version   Visualization version   GIF version

Theorem lshpkr 39215
Description: The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkr.v 𝑉 = (Base‘𝑊)
lshpkr.a + = (+g𝑊)
lshpkr.n 𝑁 = (LSpan‘𝑊)
lshpkr.p = (LSSum‘𝑊)
lshpkr.h 𝐻 = (LSHyp‘𝑊)
lshpkr.w (𝜑𝑊 ∈ LVec)
lshpkr.u (𝜑𝑈𝐻)
lshpkr.z (𝜑𝑍𝑉)
lshpkr.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkr.d 𝐷 = (Scalar‘𝑊)
lshpkr.k 𝐾 = (Base‘𝐷)
lshpkr.t · = ( ·𝑠𝑊)
lshpkr.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
lshpkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
lshpkr (𝜑 → (𝐿𝐺) = 𝑈)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   𝑈,𝑘,𝑥,𝑦   𝐷,𝑘   · ,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝐿(𝑥,𝑦,𝑘)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)

Proof of Theorem lshpkr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpkr.v . . . . 5 𝑉 = (Base‘𝑊)
2 eqid 2731 . . . . 5 (LFnl‘𝑊) = (LFnl‘𝑊)
3 lshpkr.l . . . . 5 𝐿 = (LKer‘𝑊)
4 lshpkr.w . . . . . 6 (𝜑𝑊 ∈ LVec)
5 lveclmod 21040 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
7 lshpkr.a . . . . . 6 + = (+g𝑊)
8 lshpkr.n . . . . . 6 𝑁 = (LSpan‘𝑊)
9 lshpkr.p . . . . . 6 = (LSSum‘𝑊)
10 lshpkr.h . . . . . 6 𝐻 = (LSHyp‘𝑊)
11 lshpkr.u . . . . . 6 (𝜑𝑈𝐻)
12 lshpkr.z . . . . . 6 (𝜑𝑍𝑉)
13 lshpkr.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
14 lshpkr.d . . . . . 6 𝐷 = (Scalar‘𝑊)
15 lshpkr.k . . . . . 6 𝐾 = (Base‘𝐷)
16 lshpkr.t . . . . . 6 · = ( ·𝑠𝑊)
17 lshpkr.g . . . . . 6 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
181, 7, 8, 9, 10, 4, 11, 12, 13, 14, 15, 16, 17, 2lshpkrcl 39214 . . . . 5 (𝜑𝐺 ∈ (LFnl‘𝑊))
191, 2, 3, 6, 18lkrssv 39194 . . . 4 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
2019sseld 3928 . . 3 (𝜑 → (𝑣 ∈ (𝐿𝐺) → 𝑣𝑉))
21 eqid 2731 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2221, 10, 6, 11lshplss 39079 . . . . 5 (𝜑𝑈 ∈ (LSubSp‘𝑊))
231, 21lssel 20870 . . . . 5 ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑣𝑈) → 𝑣𝑉)
2422, 23sylan 580 . . . 4 ((𝜑𝑣𝑈) → 𝑣𝑉)
2524ex 412 . . 3 (𝜑 → (𝑣𝑈𝑣𝑉))
26 eqid 2731 . . . . . . . 8 (0g𝐷) = (0g𝐷)
271, 14, 26, 2, 3ellkr 39187 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = (0g𝐷))))
284, 18, 27syl2anc 584 . . . . . 6 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ (𝑣𝑉 ∧ (𝐺𝑣) = (0g𝐷))))
2928baibd 539 . . . . 5 ((𝜑𝑣𝑉) → (𝑣 ∈ (𝐿𝐺) ↔ (𝐺𝑣) = (0g𝐷)))
304adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
3111adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑈𝐻)
3212adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑍𝑉)
33 simpr 484 . . . . . 6 ((𝜑𝑣𝑉) → 𝑣𝑉)
3413adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
351, 7, 8, 9, 10, 30, 31, 32, 33, 34, 14, 15, 16, 26, 17lshpkrlem1 39208 . . . . 5 ((𝜑𝑣𝑉) → (𝑣𝑈 ↔ (𝐺𝑣) = (0g𝐷)))
3629, 35bitr4d 282 . . . 4 ((𝜑𝑣𝑉) → (𝑣 ∈ (𝐿𝐺) ↔ 𝑣𝑈))
3736ex 412 . . 3 (𝜑 → (𝑣𝑉 → (𝑣 ∈ (𝐿𝐺) ↔ 𝑣𝑈)))
3820, 25, 37pm5.21ndd 379 . 2 (𝜑 → (𝑣 ∈ (𝐿𝐺) ↔ 𝑣𝑈))
3938eqrdv 2729 1 (𝜑 → (𝐿𝐺) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {csn 4573  cmpt 5170  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LSSumclsm 19546  LModclmod 20793  LSubSpclss 20864  LSpanclspn 20904  LVecclvec 21036  LSHypclsh 39073  LFnlclfn 39155  LKerclk 39183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-lshyp 39075  df-lfl 39156  df-lkr 39184
This theorem is referenced by:  lshpkrex  39216  dochsnkr2  41571
  Copyright terms: Public domain W3C validator