Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkr | Structured version Visualization version GIF version |
Description: The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lshpkr.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkr.a | ⊢ + = (+g‘𝑊) |
lshpkr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkr.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkr.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkr.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkr.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkr.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkr.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkr.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
lshpkr.l | ⊢ 𝐿 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lshpkr | ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2737 | . . . . 5 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
3 | lshpkr.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
4 | lshpkr.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 20143 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | lshpkr.a | . . . . . 6 ⊢ + = (+g‘𝑊) | |
8 | lshpkr.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | lshpkr.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
10 | lshpkr.h | . . . . . 6 ⊢ 𝐻 = (LSHyp‘𝑊) | |
11 | lshpkr.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
12 | lshpkr.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
13 | lshpkr.e | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
14 | lshpkr.d | . . . . . 6 ⊢ 𝐷 = (Scalar‘𝑊) | |
15 | lshpkr.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐷) | |
16 | lshpkr.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | lshpkr.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
18 | 1, 7, 8, 9, 10, 4, 11, 12, 13, 14, 15, 16, 17, 2 | lshpkrcl 36867 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LFnl‘𝑊)) |
19 | 1, 2, 3, 6, 18 | lkrssv 36847 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
20 | 19 | sseld 3900 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) → 𝑣 ∈ 𝑉)) |
21 | eqid 2737 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
22 | 21, 10, 6, 11 | lshplss 36732 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
23 | 1, 21 | lssel 19974 | . . . . 5 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑉) |
24 | 22, 23 | sylan 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑉) |
25 | 24 | ex 416 | . . 3 ⊢ (𝜑 → (𝑣 ∈ 𝑈 → 𝑣 ∈ 𝑉)) |
26 | eqid 2737 | . . . . . . . 8 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
27 | 1, 14, 26, 2, 3 | ellkr 36840 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (0g‘𝐷)))) |
28 | 4, 18, 27 | syl2anc 587 | . . . . . 6 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (0g‘𝐷)))) |
29 | 28 | baibd 543 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝐺‘𝑣) = (0g‘𝐷))) |
30 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
31 | 11 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
32 | 12 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
33 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
34 | 13 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
35 | 1, 7, 8, 9, 10, 30, 31, 32, 33, 34, 14, 15, 16, 26, 17 | lshpkrlem1 36861 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ 𝑈 ↔ (𝐺‘𝑣) = (0g‘𝐷))) |
36 | 29, 35 | bitr4d 285 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈)) |
37 | 36 | ex 416 | . . 3 ⊢ (𝜑 → (𝑣 ∈ 𝑉 → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈))) |
38 | 20, 25, 37 | pm5.21ndd 384 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈)) |
39 | 38 | eqrdv 2735 | 1 ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 {csn 4541 ↦ cmpt 5135 ‘cfv 6380 ℩crio 7169 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 Scalarcsca 16805 ·𝑠 cvsca 16806 0gc0g 16944 LSSumclsm 19023 LModclmod 19899 LSubSpclss 19968 LSpanclspn 20008 LVecclvec 20139 LSHypclsh 36726 LFnlclfn 36808 LKerclk 36836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cntz 18711 df-lsm 19025 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lvec 20140 df-lshyp 36728 df-lfl 36809 df-lkr 36837 |
This theorem is referenced by: lshpkrex 36869 dochsnkr2 39224 |
Copyright terms: Public domain | W3C validator |