![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkr | Structured version Visualization version GIF version |
Description: The kernel of functional 𝐺 is the hyperplane defining it. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lshpkr.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkr.a | ⊢ + = (+g‘𝑊) |
lshpkr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkr.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkr.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkr.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkr.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkr.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkr.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkr.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
lshpkr.l | ⊢ 𝐿 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lshpkr | ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2772 | . . . . 5 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
3 | lshpkr.l | . . . . 5 ⊢ 𝐿 = (LKer‘𝑊) | |
4 | lshpkr.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 19590 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | lshpkr.a | . . . . . 6 ⊢ + = (+g‘𝑊) | |
8 | lshpkr.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | lshpkr.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑊) | |
10 | lshpkr.h | . . . . . 6 ⊢ 𝐻 = (LSHyp‘𝑊) | |
11 | lshpkr.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
12 | lshpkr.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
13 | lshpkr.e | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
14 | lshpkr.d | . . . . . 6 ⊢ 𝐷 = (Scalar‘𝑊) | |
15 | lshpkr.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐷) | |
16 | lshpkr.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | lshpkr.g | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
18 | 1, 7, 8, 9, 10, 4, 11, 12, 13, 14, 15, 16, 17, 2 | lshpkrcl 35645 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (LFnl‘𝑊)) |
19 | 1, 2, 3, 6, 18 | lkrssv 35625 | . . . 4 ⊢ (𝜑 → (𝐿‘𝐺) ⊆ 𝑉) |
20 | 19 | sseld 3853 | . . 3 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) → 𝑣 ∈ 𝑉)) |
21 | eqid 2772 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
22 | 21, 10, 6, 11 | lshplss 35510 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (LSubSp‘𝑊)) |
23 | 1, 21 | lssel 19421 | . . . . 5 ⊢ ((𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑉) |
24 | 22, 23 | sylan 572 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑈) → 𝑣 ∈ 𝑉) |
25 | 24 | ex 405 | . . 3 ⊢ (𝜑 → (𝑣 ∈ 𝑈 → 𝑣 ∈ 𝑉)) |
26 | eqid 2772 | . . . . . . . 8 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
27 | 1, 14, 26, 2, 3 | ellkr 35618 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (0g‘𝐷)))) |
28 | 4, 18, 27 | syl2anc 576 | . . . . . 6 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (0g‘𝐷)))) |
29 | 28 | baibd 532 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (𝐿‘𝐺) ↔ (𝐺‘𝑣) = (0g‘𝐷))) |
30 | 4 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LVec) |
31 | 11 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
32 | 12 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
33 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
34 | 13 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
35 | 1, 7, 8, 9, 10, 30, 31, 32, 33, 34, 14, 15, 16, 26, 17 | lshpkrlem1 35639 | . . . . 5 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ 𝑈 ↔ (𝐺‘𝑣) = (0g‘𝐷))) |
36 | 29, 35 | bitr4d 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈)) |
37 | 36 | ex 405 | . . 3 ⊢ (𝜑 → (𝑣 ∈ 𝑉 → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈))) |
38 | 20, 25, 37 | pm5.21ndd 372 | . 2 ⊢ (𝜑 → (𝑣 ∈ (𝐿‘𝐺) ↔ 𝑣 ∈ 𝑈)) |
39 | 38 | eqrdv 2770 | 1 ⊢ (𝜑 → (𝐿‘𝐺) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∃wrex 3083 {csn 4435 ↦ cmpt 5002 ‘cfv 6182 ℩crio 6930 (class class class)co 6970 Basecbs 16329 +gcplusg 16411 Scalarcsca 16414 ·𝑠 cvsca 16415 0gc0g 16559 LSSumclsm 18510 LModclmod 19346 LSubSpclss 19415 LSpanclspn 19455 LVecclvec 19586 LSHypclsh 35504 LFnlclfn 35586 LKerclk 35614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-map 8200 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-submnd 17794 df-grp 17884 df-minusg 17885 df-sbg 17886 df-subg 18050 df-cntz 18208 df-lsm 18512 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-drng 19217 df-lmod 19348 df-lss 19416 df-lsp 19456 df-lvec 19587 df-lshyp 35506 df-lfl 35587 df-lkr 35615 |
This theorem is referenced by: lshpkrex 35647 dochsnkr2 38002 |
Copyright terms: Public domain | W3C validator |