Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsat Structured version   Visualization version   GIF version

Theorem lsmsat 38964
Description: Convert comparison of atom with sum of subspaces to a comparison to sum with atom. (elpaddatiN 39762 analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015.)
Hypotheses
Ref Expression
lsmsat.o 0 = (0g𝑊)
lsmsat.s 𝑆 = (LSubSp‘𝑊)
lsmsat.p = (LSSum‘𝑊)
lsmsat.a 𝐴 = (LSAtoms‘𝑊)
lsmsat.w (𝜑𝑊 ∈ LMod)
lsmsat.t (𝜑𝑇𝑆)
lsmsat.u (𝜑𝑈𝑆)
lsmsat.q (𝜑𝑄𝐴)
lsmsat.n (𝜑𝑇 ≠ { 0 })
lsmsat.l (𝜑𝑄 ⊆ (𝑇 𝑈))
Assertion
Ref Expression
lsmsat (𝜑 → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
Distinct variable groups:   𝐴,𝑝   ,𝑝   𝑄,𝑝   𝑇,𝑝   𝑈,𝑝   𝑊,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑆(𝑝)   0 (𝑝)

Proof of Theorem lsmsat
Dummy variables 𝑞 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmsat.q . . 3 (𝜑𝑄𝐴)
2 lsmsat.w . . . 4 (𝜑𝑊 ∈ LMod)
3 eqid 2740 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2740 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsmsat.o . . . . 5 0 = (0g𝑊)
6 lsmsat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 38947 . . . 4 (𝑊 ∈ LMod → (𝑄𝐴 ↔ ∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟})))
91, 8mpbid 232 . 2 (𝜑 → ∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟}))
10 simp3 1138 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑄 = ((LSpan‘𝑊)‘{𝑟}))
11 lsmsat.l . . . . . . . . . 10 (𝜑𝑄 ⊆ (𝑇 𝑈))
12113ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑄 ⊆ (𝑇 𝑈))
1310, 12eqsstrrd 4048 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑇 𝑈))
14 lsmsat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
1523ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑊 ∈ LMod)
16 lsmsat.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
17 lsmsat.u . . . . . . . . . . 11 (𝜑𝑈𝑆)
18 lsmsat.p . . . . . . . . . . . 12 = (LSSum‘𝑊)
1914, 18lsmcl 21105 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
202, 16, 17, 19syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
21203ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (𝑇 𝑈) ∈ 𝑆)
22 eldifi 4154 . . . . . . . . . 10 (𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑟 ∈ (Base‘𝑊))
23223ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑟 ∈ (Base‘𝑊))
243, 14, 4, 15, 21, 23ellspsn5b 21016 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (𝑟 ∈ (𝑇 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑇 𝑈)))
2513, 24mpbird 257 . . . . . . 7 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑟 ∈ (𝑇 𝑈))
2614lsssssubg 20979 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
2715, 26syl 17 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑆 ⊆ (SubGrp‘𝑊))
28163ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑇𝑆)
2927, 28sseldd 4009 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑇 ∈ (SubGrp‘𝑊))
30173ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑈𝑆)
3127, 30sseldd 4009 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑈 ∈ (SubGrp‘𝑊))
32 eqid 2740 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
3332, 18lsmelval 19691 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑟 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧)))
3429, 31, 33syl2anc 583 . . . . . . 7 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (𝑟 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧)))
3525, 34mpbid 232 . . . . . 6 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧))
36 lsmsat.n . . . . . . . . . . . . . . 15 (𝜑𝑇 ≠ { 0 })
375, 14lssne0 20972 . . . . . . . . . . . . . . . 16 (𝑇𝑆 → (𝑇 ≠ { 0 } ↔ ∃𝑞𝑇 𝑞0 ))
3816, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 ≠ { 0 } ↔ ∃𝑞𝑇 𝑞0 ))
3936, 38mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑞𝑇 𝑞0 )
4039adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → ∃𝑞𝑇 𝑞0 )
41403ad2ant1 1133 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ∃𝑞𝑇 𝑞0 )
4241adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → ∃𝑞𝑇 𝑞0 )
432adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LMod)
44433ad2ant1 1133 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LMod)
4544adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑊 ∈ LMod)
4616adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑇𝑆)
47463ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑆)
4847adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑇𝑆)
49 simpr2 1195 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑞𝑇)
503, 14lssel 20958 . . . . . . . . . . . . . . . . 17 ((𝑇𝑆𝑞𝑇) → 𝑞 ∈ (Base‘𝑊))
5148, 49, 50syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑞 ∈ (Base‘𝑊))
52 simpr3 1196 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑞0 )
533, 4, 5, 6lsatlspsn2 38948 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘𝑊) ∧ 𝑞0 ) → ((LSpan‘𝑊)‘{𝑞}) ∈ 𝐴)
5445, 51, 52, 53syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑞}) ∈ 𝐴)
5514, 4, 45, 48, 49ellspsn5 21017 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇)
56 simpl3 1193 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑟 = (𝑦(+g𝑊)𝑧))
57 simpr1 1194 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑦 = 0 )
5857oveq1d 7463 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → (𝑦(+g𝑊)𝑧) = ( 0 (+g𝑊)𝑧))
5917adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑈𝑆)
60593ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑈𝑆)
61 simp2r 1200 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑈)
623, 14lssel 20958 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑈𝑆𝑧𝑈) → 𝑧 ∈ (Base‘𝑊))
6360, 61, 62syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑧 ∈ (Base‘𝑊))
6463adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑧 ∈ (Base‘𝑊))
653, 32, 5lmod0vlid 20912 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘𝑊)) → ( 0 (+g𝑊)𝑧) = 𝑧)
6645, 64, 65syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ( 0 (+g𝑊)𝑧) = 𝑧)
6756, 58, 663eqtrd 2784 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑟 = 𝑧)
6867sneqd 4660 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → {𝑟} = {𝑧})
6968fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑟}) = ((LSpan‘𝑊)‘{𝑧}))
7014, 4, 44, 60, 61ellspsn5 21017 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑧}) ⊆ 𝑈)
7170adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑧}) ⊆ 𝑈)
7269, 71eqsstrd 4047 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑟}) ⊆ 𝑈)
733, 4lspsnsubg 21001 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑞}) ∈ (SubGrp‘𝑊))
7445, 51, 73syl2anc 583 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑞}) ∈ (SubGrp‘𝑊))
7545, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑆 ⊆ (SubGrp‘𝑊))
7660adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑈𝑆)
7775, 76sseldd 4009 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑈 ∈ (SubGrp‘𝑊))
7818lsmub2 19700 . . . . . . . . . . . . . . . . 17 ((((LSpan‘𝑊)‘{𝑞}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))
7974, 77, 78syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑈 ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))
8072, 79sstrd 4019 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))
81 sseq1 4034 . . . . . . . . . . . . . . . . 17 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → (𝑝𝑇 ↔ ((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇))
82 oveq1 7455 . . . . . . . . . . . . . . . . . 18 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → (𝑝 𝑈) = (((LSpan‘𝑊)‘{𝑞}) 𝑈))
8382sseq2d 4041 . . . . . . . . . . . . . . . . 17 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → (((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈)))
8481, 83anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → ((𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)) ↔ (((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))))
8584rspcev 3635 . . . . . . . . . . . . . . 15 ((((LSpan‘𝑊)‘{𝑞}) ∈ 𝐴 ∧ (((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
8654, 55, 80, 85syl12anc 836 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
87863exp2 1354 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → (𝑦 = 0 → (𝑞𝑇 → (𝑞0 → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))))
8887imp 406 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → (𝑞𝑇 → (𝑞0 → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))))
8988rexlimdv 3159 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → (∃𝑞𝑇 𝑞0 → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
9042, 89mpd 15 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
9144adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → 𝑊 ∈ LMod)
92 simp2l 1199 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑇)
933, 14lssel 20958 . . . . . . . . . . . . . 14 ((𝑇𝑆𝑦𝑇) → 𝑦 ∈ (Base‘𝑊))
9447, 92, 93syl2anc 583 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑦 ∈ (Base‘𝑊))
9594adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → 𝑦 ∈ (Base‘𝑊))
96 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → 𝑦0 )
973, 4, 5, 6lsatlspsn2 38948 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝐴)
9891, 95, 96, 97syl3anc 1371 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝐴)
9914, 4, 44, 47, 92ellspsn5 21017 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇)
10099adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇)
101 simp3 1138 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑟 = (𝑦(+g𝑊)𝑧))
102101sneqd 4660 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → {𝑟} = {(𝑦(+g𝑊)𝑧)})
103102fveq2d 6924 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) = ((LSpan‘𝑊)‘{(𝑦(+g𝑊)𝑧)}))
1043, 32, 4lspvadd 21118 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑦(+g𝑊)𝑧)}) ⊆ ((LSpan‘𝑊)‘{𝑦, 𝑧}))
10544, 94, 63, 104syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{(𝑦(+g𝑊)𝑧)}) ⊆ ((LSpan‘𝑊)‘{𝑦, 𝑧}))
106103, 105eqsstrd 4047 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) ⊆ ((LSpan‘𝑊)‘{𝑦, 𝑧}))
1073, 4, 18, 44, 94, 63lsmpr 21111 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦, 𝑧}) = (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})))
108106, 107sseqtrd 4049 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})))
10944, 26syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑆 ⊆ (SubGrp‘𝑊))
1103, 14, 4lspsncl 20998 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝑆)
11144, 94, 110syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝑆)
112109, 111sseldd 4009 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦}) ∈ (SubGrp‘𝑊))
113109, 60sseldd 4009 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑈 ∈ (SubGrp‘𝑊))
11418lsmless2 19703 . . . . . . . . . . . . . 14 ((((LSpan‘𝑊)‘{𝑦}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ ((LSpan‘𝑊)‘{𝑧}) ⊆ 𝑈) → (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
115112, 113, 70, 114syl3anc 1371 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
116108, 115sstrd 4019 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
117116adantr 480 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
118 sseq1 4034 . . . . . . . . . . . . 13 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → (𝑝𝑇 ↔ ((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇))
119 oveq1 7455 . . . . . . . . . . . . . 14 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → (𝑝 𝑈) = (((LSpan‘𝑊)‘{𝑦}) 𝑈))
120119sseq2d 4041 . . . . . . . . . . . . 13 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → (((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈)))
121118, 120anbi12d 631 . . . . . . . . . . . 12 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → ((𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)) ↔ (((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))))
122121rspcev 3635 . . . . . . . . . . 11 ((((LSpan‘𝑊)‘{𝑦}) ∈ 𝐴 ∧ (((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
12398, 100, 117, 122syl12anc 836 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
12490, 123pm2.61dane 3035 . . . . . . . . 9 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
1251243exp 1119 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → ((𝑦𝑇𝑧𝑈) → (𝑟 = (𝑦(+g𝑊)𝑧) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))))
126125rexlimdvv 3218 . . . . . . 7 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → (∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
1271263adant3 1132 . . . . . 6 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
12835, 127mpd 15 . . . . 5 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
129 sseq1 4034 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → (𝑄 ⊆ (𝑝 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
130129anbi2d 629 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → ((𝑝𝑇𝑄 ⊆ (𝑝 𝑈)) ↔ (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
131130rexbidv 3185 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → (∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)) ↔ ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
1321313ad2ant3 1135 . . . . 5 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)) ↔ ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
133128, 132mpbird 257 . . . 4 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
1341333exp 1119 . . 3 (𝜑 → (𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))))
135134rexlimdv 3159 . 2 (𝜑 → (∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟}) → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈))))
1369, 135mpd 15 1 (𝜑 → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  wss 3976  {csn 4648  {cpr 4650  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  SubGrpcsubg 19160  LSSumclsm 19676  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992  LSAtomsclsa 38930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lsatoms 38932
This theorem is referenced by:  dochexmidlem4  41420
  Copyright terms: Public domain W3C validator