Step | Hyp | Ref
| Expression |
1 | | lsmsat.q |
. . 3
β’ (π β π β π΄) |
2 | | lsmsat.w |
. . . 4
β’ (π β π β LMod) |
3 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
4 | | eqid 2732 |
. . . . 5
β’
(LSpanβπ) =
(LSpanβπ) |
5 | | lsmsat.o |
. . . . 5
β’ 0 =
(0gβπ) |
6 | | lsmsat.a |
. . . . 5
β’ π΄ = (LSAtomsβπ) |
7 | 3, 4, 5, 6 | islsat 37849 |
. . . 4
β’ (π β LMod β (π β π΄ β βπ β ((Baseβπ) β { 0 })π = ((LSpanβπ)β{π}))) |
8 | 2, 7 | syl 17 |
. . 3
β’ (π β (π β π΄ β βπ β ((Baseβπ) β { 0 })π = ((LSpanβπ)β{π}))) |
9 | 1, 8 | mpbid 231 |
. 2
β’ (π β βπ β ((Baseβπ) β { 0 })π = ((LSpanβπ)β{π})) |
10 | | simp3 1138 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π = ((LSpanβπ)β{π})) |
11 | | lsmsat.l |
. . . . . . . . . 10
β’ (π β π β (π β π)) |
12 | 11 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β (π β π)) |
13 | 10, 12 | eqsstrrd 4020 |
. . . . . . . 8
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β ((LSpanβπ)β{π}) β (π β π)) |
14 | | lsmsat.s |
. . . . . . . . 9
β’ π = (LSubSpβπ) |
15 | 2 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β LMod) |
16 | | lsmsat.t |
. . . . . . . . . . 11
β’ (π β π β π) |
17 | | lsmsat.u |
. . . . . . . . . . 11
β’ (π β π β π) |
18 | | lsmsat.p |
. . . . . . . . . . . 12
β’ β =
(LSSumβπ) |
19 | 14, 18 | lsmcl 20686 |
. . . . . . . . . . 11
β’ ((π β LMod β§ π β π β§ π β π) β (π β π) β π) |
20 | 2, 16, 17, 19 | syl3anc 1371 |
. . . . . . . . . 10
β’ (π β (π β π) β π) |
21 | 20 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β (π β π) β π) |
22 | | eldifi 4125 |
. . . . . . . . . 10
β’ (π β ((Baseβπ) β { 0 }) β π β (Baseβπ)) |
23 | 22 | 3ad2ant2 1134 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β (Baseβπ)) |
24 | 3, 14, 4, 15, 21, 23 | lspsnel5 20598 |
. . . . . . . 8
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β (π β (π β π) β ((LSpanβπ)β{π}) β (π β π))) |
25 | 13, 24 | mpbird 256 |
. . . . . . 7
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β (π β π)) |
26 | 14 | lsssssubg 20561 |
. . . . . . . . . 10
β’ (π β LMod β π β (SubGrpβπ)) |
27 | 15, 26 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β (SubGrpβπ)) |
28 | 16 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β π) |
29 | 27, 28 | sseldd 3982 |
. . . . . . . 8
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β (SubGrpβπ)) |
30 | 17 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β π) |
31 | 27, 30 | sseldd 3982 |
. . . . . . . 8
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β π β (SubGrpβπ)) |
32 | | eqid 2732 |
. . . . . . . . 9
β’
(+gβπ) = (+gβπ) |
33 | 32, 18 | lsmelval 19511 |
. . . . . . . 8
β’ ((π β (SubGrpβπ) β§ π β (SubGrpβπ)) β (π β (π β π) β βπ¦ β π βπ§ β π π = (π¦(+gβπ)π§))) |
34 | 29, 31, 33 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β (π β (π β π) β βπ¦ β π βπ§ β π π = (π¦(+gβπ)π§))) |
35 | 25, 34 | mpbid 231 |
. . . . . 6
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β βπ¦ β π βπ§ β π π = (π¦(+gβπ)π§)) |
36 | | lsmsat.n |
. . . . . . . . . . . . . . 15
β’ (π β π β { 0 }) |
37 | 5, 14 | lssne0 20553 |
. . . . . . . . . . . . . . . 16
β’ (π β π β (π β { 0 } β βπ β π π β 0 )) |
38 | 16, 37 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (π β { 0 } β βπ β π π β 0 )) |
39 | 36, 38 | mpbid 231 |
. . . . . . . . . . . . . 14
β’ (π β βπ β π π β 0 ) |
40 | 39 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π β ((Baseβπ) β { 0 })) β βπ β π π β 0 ) |
41 | 40 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β βπ β π π β 0 ) |
42 | 41 | adantr 481 |
. . . . . . . . . . 11
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ = 0 ) β βπ β π π β 0 ) |
43 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β ((Baseβπ) β { 0 })) β π β LMod) |
44 | 43 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π β LMod) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β LMod) |
46 | 16 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β ((Baseβπ) β { 0 })) β π β π) |
47 | 46 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π β π) |
48 | 47 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β π) |
49 | | simpr2 1195 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β π) |
50 | 3, 14 | lssel 20540 |
. . . . . . . . . . . . . . . . 17
β’ ((π β π β§ π β π) β π β (Baseβπ)) |
51 | 48, 49, 50 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β (Baseβπ)) |
52 | | simpr3 1196 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β 0 ) |
53 | 3, 4, 5, 6 | lsatlspsn2 37850 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π β (Baseβπ) β§ π β 0 ) β
((LSpanβπ)β{π}) β π΄) |
54 | 45, 51, 52, 53 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β
((LSpanβπ)β{π}) β π΄) |
55 | 14, 4, 45, 48, 49 | lspsnel5a 20599 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β
((LSpanβπ)β{π}) β π) |
56 | | simpl3 1193 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π = (π¦(+gβπ)π§)) |
57 | | simpr1 1194 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π¦ = 0 ) |
58 | 57 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β (π¦(+gβπ)π§) = ( 0 (+gβπ)π§)) |
59 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’ ((π β§ π β ((Baseβπ) β { 0 })) β π β π) |
60 | 59 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π β π) |
61 | | simp2r 1200 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π§ β π) |
62 | 3, 14 | lssel 20540 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π β π β§ π§ β π) β π§ β (Baseβπ)) |
63 | 60, 61, 62 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π§ β (Baseβπ)) |
64 | 63 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π§ β (Baseβπ)) |
65 | 3, 32, 5 | lmod0vlid 20494 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π β LMod β§ π§ β (Baseβπ)) β ( 0 (+gβπ)π§) = π§) |
66 | 45, 64, 65 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β ( 0
(+gβπ)π§) = π§) |
67 | 56, 58, 66 | 3eqtrd 2776 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π = π§) |
68 | 67 | sneqd 4639 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β {π} = {π§}) |
69 | 68 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β
((LSpanβπ)β{π}) = ((LSpanβπ)β{π§})) |
70 | 14, 4, 44, 60, 61 | lspsnel5a 20599 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π§}) β π) |
71 | 70 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β
((LSpanβπ)β{π§}) β π) |
72 | 69, 71 | eqsstrd 4019 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β
((LSpanβπ)β{π}) β π) |
73 | 3, 4 | lspsnsubg 20583 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β LMod β§ π β (Baseβπ)) β ((LSpanβπ)β{π}) β (SubGrpβπ)) |
74 | 45, 51, 73 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β
((LSpanβπ)β{π}) β (SubGrpβπ)) |
75 | 45, 26 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β (SubGrpβπ)) |
76 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β π) |
77 | 75, 76 | sseldd 3982 |
. . . . . . . . . . . . . . . . 17
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β (SubGrpβπ)) |
78 | 18 | lsmub2 19520 |
. . . . . . . . . . . . . . . . 17
β’
((((LSpanβπ)β{π}) β (SubGrpβπ) β§ π β (SubGrpβπ)) β π β (((LSpanβπ)β{π}) β π)) |
79 | 74, 77, 78 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β π β (((LSpanβπ)β{π}) β π)) |
80 | 72, 79 | sstrd 3991 |
. . . . . . . . . . . . . . 15
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β
((LSpanβπ)β{π}) β (((LSpanβπ)β{π}) β π)) |
81 | | sseq1 4006 |
. . . . . . . . . . . . . . . . 17
β’ (π = ((LSpanβπ)β{π}) β (π β π β ((LSpanβπ)β{π}) β π)) |
82 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . 18
β’ (π = ((LSpanβπ)β{π}) β (π β π) = (((LSpanβπ)β{π}) β π)) |
83 | 82 | sseq2d 4013 |
. . . . . . . . . . . . . . . . 17
β’ (π = ((LSpanβπ)β{π}) β (((LSpanβπ)β{π}) β (π β π) β ((LSpanβπ)β{π}) β (((LSpanβπ)β{π}) β π))) |
84 | 81, 83 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
β’ (π = ((LSpanβπ)β{π}) β ((π β π β§ ((LSpanβπ)β{π}) β (π β π)) β (((LSpanβπ)β{π}) β π β§ ((LSpanβπ)β{π}) β (((LSpanβπ)β{π}) β π)))) |
85 | 84 | rspcev 3612 |
. . . . . . . . . . . . . . 15
β’
((((LSpanβπ)β{π}) β π΄ β§ (((LSpanβπ)β{π}) β π β§ ((LSpanβπ)β{π}) β (((LSpanβπ)β{π}) β π))) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))) |
86 | 54, 55, 80, 85 | syl12anc 835 |
. . . . . . . . . . . . . 14
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ (π¦ = 0 β§ π β π β§ π β 0 )) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))) |
87 | 86 | 3exp2 1354 |
. . . . . . . . . . . . 13
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β (π¦ = 0 β (π β π β (π β 0 β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π)))))) |
88 | 87 | imp 407 |
. . . . . . . . . . . 12
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ = 0 ) β (π β π β (π β 0 β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))))) |
89 | 88 | rexlimdv 3153 |
. . . . . . . . . . 11
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ = 0 ) β (βπ β π π β 0 β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π)))) |
90 | 42, 89 | mpd 15 |
. . . . . . . . . 10
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ = 0 ) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))) |
91 | 44 | adantr 481 |
. . . . . . . . . . . 12
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ β 0 ) β π β LMod) |
92 | | simp2l 1199 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π¦ β π) |
93 | 3, 14 | lssel 20540 |
. . . . . . . . . . . . . 14
β’ ((π β π β§ π¦ β π) β π¦ β (Baseβπ)) |
94 | 47, 92, 93 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π¦ β (Baseβπ)) |
95 | 94 | adantr 481 |
. . . . . . . . . . . 12
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ β 0 ) β π¦ β (Baseβπ)) |
96 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ β 0 ) β π¦ β 0 ) |
97 | 3, 4, 5, 6 | lsatlspsn2 37850 |
. . . . . . . . . . . 12
β’ ((π β LMod β§ π¦ β (Baseβπ) β§ π¦ β 0 ) β
((LSpanβπ)β{π¦}) β π΄) |
98 | 91, 95, 96, 97 | syl3anc 1371 |
. . . . . . . . . . 11
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ β 0 ) β
((LSpanβπ)β{π¦}) β π΄) |
99 | 14, 4, 44, 47, 92 | lspsnel5a 20599 |
. . . . . . . . . . . 12
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π¦}) β π) |
100 | 99 | adantr 481 |
. . . . . . . . . . 11
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ β 0 ) β
((LSpanβπ)β{π¦}) β π) |
101 | | simp3 1138 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π = (π¦(+gβπ)π§)) |
102 | 101 | sneqd 4639 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β {π} = {(π¦(+gβπ)π§)}) |
103 | 102 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π}) = ((LSpanβπ)β{(π¦(+gβπ)π§)})) |
104 | 3, 32, 4 | lspvadd 20699 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π¦ β (Baseβπ) β§ π§ β (Baseβπ)) β ((LSpanβπ)β{(π¦(+gβπ)π§)}) β ((LSpanβπ)β{π¦, π§})) |
105 | 44, 94, 63, 104 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{(π¦(+gβπ)π§)}) β ((LSpanβπ)β{π¦, π§})) |
106 | 103, 105 | eqsstrd 4019 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π}) β ((LSpanβπ)β{π¦, π§})) |
107 | 3, 4, 18, 44, 94, 63 | lsmpr 20692 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π¦, π§}) = (((LSpanβπ)β{π¦}) β ((LSpanβπ)β{π§}))) |
108 | 106, 107 | sseqtrd 4021 |
. . . . . . . . . . . . 13
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π}) β (((LSpanβπ)β{π¦}) β ((LSpanβπ)β{π§}))) |
109 | 44, 26 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π β (SubGrpβπ)) |
110 | 3, 14, 4 | lspsncl 20580 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π¦ β (Baseβπ)) β ((LSpanβπ)β{π¦}) β π) |
111 | 44, 94, 110 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π¦}) β π) |
112 | 109, 111 | sseldd 3982 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π¦}) β (SubGrpβπ)) |
113 | 109, 60 | sseldd 3982 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β π β (SubGrpβπ)) |
114 | 18 | lsmless2 19523 |
. . . . . . . . . . . . . 14
β’
((((LSpanβπ)β{π¦}) β (SubGrpβπ) β§ π β (SubGrpβπ) β§ ((LSpanβπ)β{π§}) β π) β (((LSpanβπ)β{π¦}) β ((LSpanβπ)β{π§})) β (((LSpanβπ)β{π¦}) β π)) |
115 | 112, 113,
70, 114 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β (((LSpanβπ)β{π¦}) β ((LSpanβπ)β{π§})) β (((LSpanβπ)β{π¦}) β π)) |
116 | 108, 115 | sstrd 3991 |
. . . . . . . . . . . 12
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β ((LSpanβπ)β{π}) β (((LSpanβπ)β{π¦}) β π)) |
117 | 116 | adantr 481 |
. . . . . . . . . . 11
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ β 0 ) β
((LSpanβπ)β{π}) β (((LSpanβπ)β{π¦}) β π)) |
118 | | sseq1 4006 |
. . . . . . . . . . . . 13
β’ (π = ((LSpanβπ)β{π¦}) β (π β π β ((LSpanβπ)β{π¦}) β π)) |
119 | | oveq1 7412 |
. . . . . . . . . . . . . 14
β’ (π = ((LSpanβπ)β{π¦}) β (π β π) = (((LSpanβπ)β{π¦}) β π)) |
120 | 119 | sseq2d 4013 |
. . . . . . . . . . . . 13
β’ (π = ((LSpanβπ)β{π¦}) β (((LSpanβπ)β{π}) β (π β π) β ((LSpanβπ)β{π}) β (((LSpanβπ)β{π¦}) β π))) |
121 | 118, 120 | anbi12d 631 |
. . . . . . . . . . . 12
β’ (π = ((LSpanβπ)β{π¦}) β ((π β π β§ ((LSpanβπ)β{π}) β (π β π)) β (((LSpanβπ)β{π¦}) β π β§ ((LSpanβπ)β{π}) β (((LSpanβπ)β{π¦}) β π)))) |
122 | 121 | rspcev 3612 |
. . . . . . . . . . 11
β’
((((LSpanβπ)β{π¦}) β π΄ β§ (((LSpanβπ)β{π¦}) β π β§ ((LSpanβπ)β{π}) β (((LSpanβπ)β{π¦}) β π))) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))) |
123 | 98, 100, 117, 122 | syl12anc 835 |
. . . . . . . . . 10
β’ ((((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β§ π¦ β 0 ) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))) |
124 | 90, 123 | pm2.61dane 3029 |
. . . . . . . . 9
β’ (((π β§ π β ((Baseβπ) β { 0 })) β§ (π¦ β π β§ π§ β π) β§ π = (π¦(+gβπ)π§)) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))) |
125 | 124 | 3exp 1119 |
. . . . . . . 8
β’ ((π β§ π β ((Baseβπ) β { 0 })) β ((π¦ β π β§ π§ β π) β (π = (π¦(+gβπ)π§) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))))) |
126 | 125 | rexlimdvv 3210 |
. . . . . . 7
β’ ((π β§ π β ((Baseβπ) β { 0 })) β (βπ¦ β π βπ§ β π π = (π¦(+gβπ)π§) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π)))) |
127 | 126 | 3adant3 1132 |
. . . . . 6
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β (βπ¦ β π βπ§ β π π = (π¦(+gβπ)π§) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π)))) |
128 | 35, 127 | mpd 15 |
. . . . 5
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π))) |
129 | | sseq1 4006 |
. . . . . . . 8
β’ (π = ((LSpanβπ)β{π}) β (π β (π β π) β ((LSpanβπ)β{π}) β (π β π))) |
130 | 129 | anbi2d 629 |
. . . . . . 7
β’ (π = ((LSpanβπ)β{π}) β ((π β π β§ π β (π β π)) β (π β π β§ ((LSpanβπ)β{π}) β (π β π)))) |
131 | 130 | rexbidv 3178 |
. . . . . 6
β’ (π = ((LSpanβπ)β{π}) β (βπ β π΄ (π β π β§ π β (π β π)) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π)))) |
132 | 131 | 3ad2ant3 1135 |
. . . . 5
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β (βπ β π΄ (π β π β§ π β (π β π)) β βπ β π΄ (π β π β§ ((LSpanβπ)β{π}) β (π β π)))) |
133 | 128, 132 | mpbird 256 |
. . . 4
β’ ((π β§ π β ((Baseβπ) β { 0 }) β§ π = ((LSpanβπ)β{π})) β βπ β π΄ (π β π β§ π β (π β π))) |
134 | 133 | 3exp 1119 |
. . 3
β’ (π β (π β ((Baseβπ) β { 0 }) β (π = ((LSpanβπ)β{π}) β βπ β π΄ (π β π β§ π β (π β π))))) |
135 | 134 | rexlimdv 3153 |
. 2
β’ (π β (βπ β ((Baseβπ) β { 0 })π = ((LSpanβπ)β{π}) β βπ β π΄ (π β π β§ π β (π β π)))) |
136 | 9, 135 | mpd 15 |
1
β’ (π β βπ β π΄ (π β π β§ π β (π β π))) |