Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsat Structured version   Visualization version   GIF version

Theorem lsmsat 37022
Description: Convert comparison of atom with sum of subspaces to a comparison to sum with atom. (elpaddatiN 37819 analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015.)
Hypotheses
Ref Expression
lsmsat.o 0 = (0g𝑊)
lsmsat.s 𝑆 = (LSubSp‘𝑊)
lsmsat.p = (LSSum‘𝑊)
lsmsat.a 𝐴 = (LSAtoms‘𝑊)
lsmsat.w (𝜑𝑊 ∈ LMod)
lsmsat.t (𝜑𝑇𝑆)
lsmsat.u (𝜑𝑈𝑆)
lsmsat.q (𝜑𝑄𝐴)
lsmsat.n (𝜑𝑇 ≠ { 0 })
lsmsat.l (𝜑𝑄 ⊆ (𝑇 𝑈))
Assertion
Ref Expression
lsmsat (𝜑 → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
Distinct variable groups:   𝐴,𝑝   ,𝑝   𝑄,𝑝   𝑇,𝑝   𝑈,𝑝   𝑊,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝑆(𝑝)   0 (𝑝)

Proof of Theorem lsmsat
Dummy variables 𝑞 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsmsat.q . . 3 (𝜑𝑄𝐴)
2 lsmsat.w . . . 4 (𝜑𝑊 ∈ LMod)
3 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2738 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsmsat.o . . . . 5 0 = (0g𝑊)
6 lsmsat.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 37005 . . . 4 (𝑊 ∈ LMod → (𝑄𝐴 ↔ ∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟})))
91, 8mpbid 231 . 2 (𝜑 → ∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟}))
10 simp3 1137 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑄 = ((LSpan‘𝑊)‘{𝑟}))
11 lsmsat.l . . . . . . . . . 10 (𝜑𝑄 ⊆ (𝑇 𝑈))
12113ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑄 ⊆ (𝑇 𝑈))
1310, 12eqsstrrd 3960 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑇 𝑈))
14 lsmsat.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
1523ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑊 ∈ LMod)
16 lsmsat.t . . . . . . . . . . 11 (𝜑𝑇𝑆)
17 lsmsat.u . . . . . . . . . . 11 (𝜑𝑈𝑆)
18 lsmsat.p . . . . . . . . . . . 12 = (LSSum‘𝑊)
1914, 18lsmcl 20345 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
202, 16, 17, 19syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝑇 𝑈) ∈ 𝑆)
21203ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (𝑇 𝑈) ∈ 𝑆)
22 eldifi 4061 . . . . . . . . . 10 (𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑟 ∈ (Base‘𝑊))
23223ad2ant2 1133 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑟 ∈ (Base‘𝑊))
243, 14, 4, 15, 21, 23lspsnel5 20257 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (𝑟 ∈ (𝑇 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑇 𝑈)))
2513, 24mpbird 256 . . . . . . 7 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑟 ∈ (𝑇 𝑈))
2614lsssssubg 20220 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊))
2715, 26syl 17 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑆 ⊆ (SubGrp‘𝑊))
28163ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑇𝑆)
2927, 28sseldd 3922 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑇 ∈ (SubGrp‘𝑊))
30173ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑈𝑆)
3127, 30sseldd 3922 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → 𝑈 ∈ (SubGrp‘𝑊))
32 eqid 2738 . . . . . . . . 9 (+g𝑊) = (+g𝑊)
3332, 18lsmelval 19254 . . . . . . . 8 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑟 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧)))
3429, 31, 33syl2anc 584 . . . . . . 7 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (𝑟 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧)))
3525, 34mpbid 231 . . . . . 6 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧))
36 lsmsat.n . . . . . . . . . . . . . . 15 (𝜑𝑇 ≠ { 0 })
375, 14lssne0 20212 . . . . . . . . . . . . . . . 16 (𝑇𝑆 → (𝑇 ≠ { 0 } ↔ ∃𝑞𝑇 𝑞0 ))
3816, 37syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑇 ≠ { 0 } ↔ ∃𝑞𝑇 𝑞0 ))
3936, 38mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → ∃𝑞𝑇 𝑞0 )
4039adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → ∃𝑞𝑇 𝑞0 )
41403ad2ant1 1132 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ∃𝑞𝑇 𝑞0 )
4241adantr 481 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → ∃𝑞𝑇 𝑞0 )
432adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LMod)
44433ad2ant1 1132 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑊 ∈ LMod)
4544adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑊 ∈ LMod)
4616adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑇𝑆)
47463ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑇𝑆)
4847adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑇𝑆)
49 simpr2 1194 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑞𝑇)
503, 14lssel 20199 . . . . . . . . . . . . . . . . 17 ((𝑇𝑆𝑞𝑇) → 𝑞 ∈ (Base‘𝑊))
5148, 49, 50syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑞 ∈ (Base‘𝑊))
52 simpr3 1195 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑞0 )
533, 4, 5, 6lsatlspsn2 37006 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘𝑊) ∧ 𝑞0 ) → ((LSpan‘𝑊)‘{𝑞}) ∈ 𝐴)
5445, 51, 52, 53syl3anc 1370 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑞}) ∈ 𝐴)
5514, 4, 45, 48, 49lspsnel5a 20258 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇)
56 simpl3 1192 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑟 = (𝑦(+g𝑊)𝑧))
57 simpr1 1193 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑦 = 0 )
5857oveq1d 7290 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → (𝑦(+g𝑊)𝑧) = ( 0 (+g𝑊)𝑧))
5917adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑈𝑆)
60593ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑈𝑆)
61 simp2r 1199 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑧𝑈)
623, 14lssel 20199 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑈𝑆𝑧𝑈) → 𝑧 ∈ (Base‘𝑊))
6360, 61, 62syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑧 ∈ (Base‘𝑊))
6463adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑧 ∈ (Base‘𝑊))
653, 32, 5lmod0vlid 20153 . . . . . . . . . . . . . . . . . . . . 21 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘𝑊)) → ( 0 (+g𝑊)𝑧) = 𝑧)
6645, 64, 65syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ( 0 (+g𝑊)𝑧) = 𝑧)
6756, 58, 663eqtrd 2782 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑟 = 𝑧)
6867sneqd 4573 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → {𝑟} = {𝑧})
6968fveq2d 6778 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑟}) = ((LSpan‘𝑊)‘{𝑧}))
7014, 4, 44, 60, 61lspsnel5a 20258 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑧}) ⊆ 𝑈)
7170adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑧}) ⊆ 𝑈)
7269, 71eqsstrd 3959 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑟}) ⊆ 𝑈)
733, 4lspsnsubg 20242 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝑞 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑞}) ∈ (SubGrp‘𝑊))
7445, 51, 73syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑞}) ∈ (SubGrp‘𝑊))
7545, 26syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑆 ⊆ (SubGrp‘𝑊))
7660adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑈𝑆)
7775, 76sseldd 3922 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑈 ∈ (SubGrp‘𝑊))
7818lsmub2 19263 . . . . . . . . . . . . . . . . 17 ((((LSpan‘𝑊)‘{𝑞}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑈 ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))
7974, 77, 78syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → 𝑈 ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))
8072, 79sstrd 3931 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))
81 sseq1 3946 . . . . . . . . . . . . . . . . 17 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → (𝑝𝑇 ↔ ((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇))
82 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → (𝑝 𝑈) = (((LSpan‘𝑊)‘{𝑞}) 𝑈))
8382sseq2d 3953 . . . . . . . . . . . . . . . . 17 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → (((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈)))
8481, 83anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑝 = ((LSpan‘𝑊)‘{𝑞}) → ((𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)) ↔ (((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))))
8584rspcev 3561 . . . . . . . . . . . . . . 15 ((((LSpan‘𝑊)‘{𝑞}) ∈ 𝐴 ∧ (((LSpan‘𝑊)‘{𝑞}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑞}) 𝑈))) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
8654, 55, 80, 85syl12anc 834 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ (𝑦 = 0𝑞𝑇𝑞0 )) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
87863exp2 1353 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → (𝑦 = 0 → (𝑞𝑇 → (𝑞0 → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))))
8887imp 407 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → (𝑞𝑇 → (𝑞0 → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))))
8988rexlimdv 3212 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → (∃𝑞𝑇 𝑞0 → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
9042, 89mpd 15 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦 = 0 ) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
9144adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → 𝑊 ∈ LMod)
92 simp2l 1198 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑦𝑇)
933, 14lssel 20199 . . . . . . . . . . . . . 14 ((𝑇𝑆𝑦𝑇) → 𝑦 ∈ (Base‘𝑊))
9447, 92, 93syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑦 ∈ (Base‘𝑊))
9594adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → 𝑦 ∈ (Base‘𝑊))
96 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → 𝑦0 )
973, 4, 5, 6lsatlspsn2 37006 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝐴)
9891, 95, 96, 97syl3anc 1370 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝐴)
9914, 4, 44, 47, 92lspsnel5a 20258 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇)
10099adantr 481 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇)
101 simp3 1137 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑟 = (𝑦(+g𝑊)𝑧))
102101sneqd 4573 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → {𝑟} = {(𝑦(+g𝑊)𝑧)})
103102fveq2d 6778 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) = ((LSpan‘𝑊)‘{(𝑦(+g𝑊)𝑧)}))
1043, 32, 4lspvadd 20358 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑦(+g𝑊)𝑧)}) ⊆ ((LSpan‘𝑊)‘{𝑦, 𝑧}))
10544, 94, 63, 104syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{(𝑦(+g𝑊)𝑧)}) ⊆ ((LSpan‘𝑊)‘{𝑦, 𝑧}))
106103, 105eqsstrd 3959 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) ⊆ ((LSpan‘𝑊)‘{𝑦, 𝑧}))
1073, 4, 18, 44, 94, 63lsmpr 20351 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦, 𝑧}) = (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})))
108106, 107sseqtrd 3961 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})))
10944, 26syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑆 ⊆ (SubGrp‘𝑊))
1103, 14, 4lspsncl 20239 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝑆)
11144, 94, 110syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦}) ∈ 𝑆)
112109, 111sseldd 3922 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑦}) ∈ (SubGrp‘𝑊))
113109, 60sseldd 3922 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → 𝑈 ∈ (SubGrp‘𝑊))
11418lsmless2 19266 . . . . . . . . . . . . . 14 ((((LSpan‘𝑊)‘{𝑦}) ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊) ∧ ((LSpan‘𝑊)‘{𝑧}) ⊆ 𝑈) → (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
115112, 113, 70, 114syl3anc 1370 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → (((LSpan‘𝑊)‘{𝑦}) ((LSpan‘𝑊)‘{𝑧})) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
116108, 115sstrd 3931 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
117116adantr 481 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))
118 sseq1 3946 . . . . . . . . . . . . 13 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → (𝑝𝑇 ↔ ((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇))
119 oveq1 7282 . . . . . . . . . . . . . 14 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → (𝑝 𝑈) = (((LSpan‘𝑊)‘{𝑦}) 𝑈))
120119sseq2d 3953 . . . . . . . . . . . . 13 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → (((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈)))
121118, 120anbi12d 631 . . . . . . . . . . . 12 (𝑝 = ((LSpan‘𝑊)‘{𝑦}) → ((𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)) ↔ (((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))))
122121rspcev 3561 . . . . . . . . . . 11 ((((LSpan‘𝑊)‘{𝑦}) ∈ 𝐴 ∧ (((LSpan‘𝑊)‘{𝑦}) ⊆ 𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (((LSpan‘𝑊)‘{𝑦}) 𝑈))) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
12398, 100, 117, 122syl12anc 834 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) ∧ 𝑦0 ) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
12490, 123pm2.61dane 3032 . . . . . . . . 9 (((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ (𝑦𝑇𝑧𝑈) ∧ 𝑟 = (𝑦(+g𝑊)𝑧)) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
1251243exp 1118 . . . . . . . 8 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → ((𝑦𝑇𝑧𝑈) → (𝑟 = (𝑦(+g𝑊)𝑧) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))))
126125rexlimdvv 3222 . . . . . . 7 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 })) → (∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
1271263adant3 1131 . . . . . 6 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (∃𝑦𝑇𝑧𝑈 𝑟 = (𝑦(+g𝑊)𝑧) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
12835, 127mpd 15 . . . . 5 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
129 sseq1 3946 . . . . . . . 8 (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → (𝑄 ⊆ (𝑝 𝑈) ↔ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈)))
130129anbi2d 629 . . . . . . 7 (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → ((𝑝𝑇𝑄 ⊆ (𝑝 𝑈)) ↔ (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
131130rexbidv 3226 . . . . . 6 (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → (∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)) ↔ ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
1321313ad2ant3 1134 . . . . 5 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → (∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)) ↔ ∃𝑝𝐴 (𝑝𝑇 ∧ ((LSpan‘𝑊)‘{𝑟}) ⊆ (𝑝 𝑈))))
133128, 132mpbird 256 . . . 4 ((𝜑𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑄 = ((LSpan‘𝑊)‘{𝑟})) → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
1341333exp 1118 . . 3 (𝜑 → (𝑟 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑄 = ((LSpan‘𝑊)‘{𝑟}) → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))))
135134rexlimdv 3212 . 2 (𝜑 → (∃𝑟 ∈ ((Base‘𝑊) ∖ { 0 })𝑄 = ((LSpan‘𝑊)‘{𝑟}) → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈))))
1369, 135mpd 15 1 (𝜑 → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  SubGrpcsubg 18749  LSSumclsm 19239  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LSAtomsclsa 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lsatoms 36990
This theorem is referenced by:  dochexmidlem4  39477
  Copyright terms: Public domain W3C validator