Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatomic Structured version   Visualization version   GIF version

Theorem lssatomic 39034
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 32344 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lssatomic.s 𝑆 = (LSubSp‘𝑊)
lssatomic.o 0 = (0g𝑊)
lssatomic.a 𝐴 = (LSAtoms‘𝑊)
lssatomic.w (𝜑𝑊 ∈ LMod)
lssatomic.u (𝜑𝑈𝑆)
lssatomic.n (𝜑𝑈 ≠ { 0 })
Assertion
Ref Expression
lssatomic (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Distinct variable groups:   𝐴,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hints:   𝜑(𝑞)   𝑆(𝑞)   0 (𝑞)

Proof of Theorem lssatomic
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lssatomic.n . . 3 (𝜑𝑈 ≠ { 0 })
2 lssatomic.u . . . 4 (𝜑𝑈𝑆)
3 lssatomic.o . . . . 5 0 = (0g𝑊)
4 lssatomic.s . . . . 5 𝑆 = (LSubSp‘𝑊)
53, 4lssne0 20913 . . . 4 (𝑈𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
62, 5syl 17 . . 3 (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
71, 6mpbid 232 . 2 (𝜑 → ∃𝑥𝑈 𝑥0 )
8 lssatomic.w . . . . . 6 (𝜑𝑊 ∈ LMod)
983ad2ant1 1133 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑊 ∈ LMod)
1023ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑈𝑆)
11 simp2 1137 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑥𝑈)
12 eqid 2736 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1312, 4lssel 20899 . . . . . 6 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
1410, 11, 13syl2anc 584 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥 ∈ (Base‘𝑊))
15 simp3 1138 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥0 )
16 eqid 2736 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
17 lssatomic.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
1812, 16, 3, 17lsatlspsn2 39015 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
199, 14, 15, 18syl3anc 1373 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
204, 16, 9, 10, 11ellspsn5 20958 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
21 sseq1 3989 . . . . 5 (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
2221rspcev 3606 . . . 4 ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞𝐴 𝑞𝑈)
2319, 20, 22syl2anc 584 . . 3 ((𝜑𝑥𝑈𝑥0 ) → ∃𝑞𝐴 𝑞𝑈)
2423rexlimdv3a 3146 . 2 (𝜑 → (∃𝑥𝑈 𝑥0 → ∃𝑞𝐴 𝑞𝑈))
257, 24mpd 15 1 (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  wss 3931  {csn 4606  cfv 6536  Basecbs 17233  0gc0g 17458  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  LSAtomsclsa 38997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lsatoms 38999
This theorem is referenced by:  lsatcvatlem  39072  dochexmidlem5  41488
  Copyright terms: Public domain W3C validator