Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatomic Structured version   Visualization version   GIF version

Theorem lssatomic 39049
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 32333 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lssatomic.s 𝑆 = (LSubSp‘𝑊)
lssatomic.o 0 = (0g𝑊)
lssatomic.a 𝐴 = (LSAtoms‘𝑊)
lssatomic.w (𝜑𝑊 ∈ LMod)
lssatomic.u (𝜑𝑈𝑆)
lssatomic.n (𝜑𝑈 ≠ { 0 })
Assertion
Ref Expression
lssatomic (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Distinct variable groups:   𝐴,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hints:   𝜑(𝑞)   𝑆(𝑞)   0 (𝑞)

Proof of Theorem lssatomic
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lssatomic.n . . 3 (𝜑𝑈 ≠ { 0 })
2 lssatomic.u . . . 4 (𝜑𝑈𝑆)
3 lssatomic.o . . . . 5 0 = (0g𝑊)
4 lssatomic.s . . . . 5 𝑆 = (LSubSp‘𝑊)
53, 4lssne0 20882 . . . 4 (𝑈𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
62, 5syl 17 . . 3 (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
71, 6mpbid 232 . 2 (𝜑 → ∃𝑥𝑈 𝑥0 )
8 lssatomic.w . . . . . 6 (𝜑𝑊 ∈ LMod)
983ad2ant1 1133 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑊 ∈ LMod)
1023ad2ant1 1133 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑈𝑆)
11 simp2 1137 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑥𝑈)
12 eqid 2731 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1312, 4lssel 20868 . . . . . 6 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
1410, 11, 13syl2anc 584 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥 ∈ (Base‘𝑊))
15 simp3 1138 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥0 )
16 eqid 2731 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
17 lssatomic.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
1812, 16, 3, 17lsatlspsn2 39030 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
199, 14, 15, 18syl3anc 1373 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
204, 16, 9, 10, 11ellspsn5 20927 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
21 sseq1 3960 . . . . 5 (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
2221rspcev 3577 . . . 4 ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞𝐴 𝑞𝑈)
2319, 20, 22syl2anc 584 . . 3 ((𝜑𝑥𝑈𝑥0 ) → ∃𝑞𝐴 𝑞𝑈)
2423rexlimdv3a 3137 . 2 (𝜑 → (∃𝑥𝑈 𝑥0 → ∃𝑞𝐴 𝑞𝑈))
257, 24mpd 15 1 (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  wss 3902  {csn 4576  cfv 6481  Basecbs 17117  0gc0g 17340  LModclmod 20791  LSubSpclss 20862  LSpanclspn 20902  LSAtomsclsa 39012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lsatoms 39014
This theorem is referenced by:  lsatcvatlem  39087  dochexmidlem5  41502
  Copyright terms: Public domain W3C validator