![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatomic | Structured version Visualization version GIF version |
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 31879 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lssatomic.s | β’ π = (LSubSpβπ) |
lssatomic.o | β’ 0 = (0gβπ) |
lssatomic.a | β’ π΄ = (LSAtomsβπ) |
lssatomic.w | β’ (π β π β LMod) |
lssatomic.u | β’ (π β π β π) |
lssatomic.n | β’ (π β π β { 0 }) |
Ref | Expression |
---|---|
lssatomic | β’ (π β βπ β π΄ π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssatomic.n | . . 3 β’ (π β π β { 0 }) | |
2 | lssatomic.u | . . . 4 β’ (π β π β π) | |
3 | lssatomic.o | . . . . 5 β’ 0 = (0gβπ) | |
4 | lssatomic.s | . . . . 5 β’ π = (LSubSpβπ) | |
5 | 3, 4 | lssne0 20706 | . . . 4 β’ (π β π β (π β { 0 } β βπ₯ β π π₯ β 0 )) |
6 | 2, 5 | syl 17 | . . 3 β’ (π β (π β { 0 } β βπ₯ β π π₯ β 0 )) |
7 | 1, 6 | mpbid 231 | . 2 β’ (π β βπ₯ β π π₯ β 0 ) |
8 | lssatomic.w | . . . . . 6 β’ (π β π β LMod) | |
9 | 8 | 3ad2ant1 1132 | . . . . 5 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β π β LMod) |
10 | 2 | 3ad2ant1 1132 | . . . . . 6 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β π β π) |
11 | simp2 1136 | . . . . . 6 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β π₯ β π) | |
12 | eqid 2731 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
13 | 12, 4 | lssel 20693 | . . . . . 6 β’ ((π β π β§ π₯ β π) β π₯ β (Baseβπ)) |
14 | 10, 11, 13 | syl2anc 583 | . . . . 5 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β π₯ β (Baseβπ)) |
15 | simp3 1137 | . . . . 5 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β π₯ β 0 ) | |
16 | eqid 2731 | . . . . . 6 β’ (LSpanβπ) = (LSpanβπ) | |
17 | lssatomic.a | . . . . . 6 β’ π΄ = (LSAtomsβπ) | |
18 | 12, 16, 3, 17 | lsatlspsn2 38166 | . . . . 5 β’ ((π β LMod β§ π₯ β (Baseβπ) β§ π₯ β 0 ) β ((LSpanβπ)β{π₯}) β π΄) |
19 | 9, 14, 15, 18 | syl3anc 1370 | . . . 4 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β ((LSpanβπ)β{π₯}) β π΄) |
20 | 4, 16, 9, 10, 11 | lspsnel5a 20752 | . . . 4 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β ((LSpanβπ)β{π₯}) β π) |
21 | sseq1 4007 | . . . . 5 β’ (π = ((LSpanβπ)β{π₯}) β (π β π β ((LSpanβπ)β{π₯}) β π)) | |
22 | 21 | rspcev 3612 | . . . 4 β’ ((((LSpanβπ)β{π₯}) β π΄ β§ ((LSpanβπ)β{π₯}) β π) β βπ β π΄ π β π) |
23 | 19, 20, 22 | syl2anc 583 | . . 3 β’ ((π β§ π₯ β π β§ π₯ β 0 ) β βπ β π΄ π β π) |
24 | 23 | rexlimdv3a 3158 | . 2 β’ (π β (βπ₯ β π π₯ β 0 β βπ β π΄ π β π)) |
25 | 7, 24 | mpd 15 | 1 β’ (π β βπ β π΄ π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1086 = wceq 1540 β wcel 2105 β wne 2939 βwrex 3069 β wss 3948 {csn 4628 βcfv 6543 Basecbs 17149 0gc0g 17390 LModclmod 20615 LSubSpclss 20687 LSpanclspn 20727 LSAtomsclsa 38148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lsatoms 38150 |
This theorem is referenced by: lsatcvatlem 38223 dochexmidlem5 40639 |
Copyright terms: Public domain | W3C validator |