Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatomic | Structured version Visualization version GIF version |
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 30720 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lssatomic.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssatomic.o | ⊢ 0 = (0g‘𝑊) |
lssatomic.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lssatomic.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssatomic.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssatomic.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
Ref | Expression |
---|---|
lssatomic | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssatomic.n | . . 3 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
2 | lssatomic.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lssatomic.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
4 | lssatomic.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | 3, 4 | lssne0 20212 | . . . 4 ⊢ (𝑈 ∈ 𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 ) |
8 | lssatomic.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
9 | 8 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑊 ∈ LMod) |
10 | 2 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑈 ∈ 𝑆) |
11 | simp2 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝑈) | |
12 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
13 | 12, 4 | lssel 20199 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑊)) |
14 | 10, 11, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ (Base‘𝑊)) |
15 | simp3 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) | |
16 | eqid 2738 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
17 | lssatomic.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
18 | 12, 16, 3, 17 | lsatlspsn2 37006 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
19 | 9, 14, 15, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
20 | 4, 16, 9, 10, 11 | lspsnel5a 20258 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) |
21 | sseq1 3946 | . . . . 5 ⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)) | |
22 | 21 | rspcev 3561 | . . . 4 ⊢ ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
23 | 19, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
24 | 23 | rexlimdv3a 3215 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑥 ≠ 0 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈)) |
25 | 7, 24 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ⊆ wss 3887 {csn 4561 ‘cfv 6433 Basecbs 16912 0gc0g 17150 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 LSAtomsclsa 36988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lsatoms 36990 |
This theorem is referenced by: lsatcvatlem 37063 dochexmidlem5 39478 |
Copyright terms: Public domain | W3C validator |