| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatomic | Structured version Visualization version GIF version | ||
| Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 32340 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lssatomic.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lssatomic.o | ⊢ 0 = (0g‘𝑊) |
| lssatomic.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
| lssatomic.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lssatomic.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lssatomic.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
| Ref | Expression |
|---|---|
| lssatomic | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssatomic.n | . . 3 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
| 2 | lssatomic.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 3 | lssatomic.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
| 4 | lssatomic.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | 3, 4 | lssne0 20886 | . . . 4 ⊢ (𝑈 ∈ 𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 ) |
| 8 | lssatomic.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑊 ∈ LMod) |
| 10 | 2 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑈 ∈ 𝑆) |
| 11 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝑈) | |
| 12 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 13 | 12, 4 | lssel 20872 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑊)) |
| 14 | 10, 11, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ (Base‘𝑊)) |
| 15 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) | |
| 16 | eqid 2733 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 17 | lssatomic.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 18 | 12, 16, 3, 17 | lsatlspsn2 39111 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
| 19 | 9, 14, 15, 18 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
| 20 | 4, 16, 9, 10, 11 | ellspsn5 20931 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) |
| 21 | sseq1 3956 | . . . . 5 ⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)) | |
| 22 | 21 | rspcev 3573 | . . . 4 ⊢ ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
| 23 | 19, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
| 24 | 23 | rexlimdv3a 3138 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑥 ≠ 0 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈)) |
| 25 | 7, 24 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ⊆ wss 3898 {csn 4575 ‘cfv 6486 Basecbs 17122 0gc0g 17345 LModclmod 20795 LSubSpclss 20866 LSpanclspn 20906 LSAtomsclsa 39093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lsatoms 39095 |
| This theorem is referenced by: lsatcvatlem 39168 dochexmidlem5 41583 |
| Copyright terms: Public domain | W3C validator |