![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatomic | Structured version Visualization version GIF version |
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 32387 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lssatomic.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssatomic.o | ⊢ 0 = (0g‘𝑊) |
lssatomic.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lssatomic.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssatomic.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssatomic.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
Ref | Expression |
---|---|
lssatomic | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssatomic.n | . . 3 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
2 | lssatomic.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lssatomic.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
4 | lssatomic.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | 3, 4 | lssne0 20967 | . . . 4 ⊢ (𝑈 ∈ 𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
7 | 1, 6 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 ) |
8 | lssatomic.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
9 | 8 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑊 ∈ LMod) |
10 | 2 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑈 ∈ 𝑆) |
11 | simp2 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝑈) | |
12 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
13 | 12, 4 | lssel 20953 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑊)) |
14 | 10, 11, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ (Base‘𝑊)) |
15 | simp3 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) | |
16 | eqid 2735 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
17 | lssatomic.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
18 | 12, 16, 3, 17 | lsatlspsn2 38974 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
19 | 9, 14, 15, 18 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
20 | 4, 16, 9, 10, 11 | ellspsn5 21012 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) |
21 | sseq1 4021 | . . . . 5 ⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)) | |
22 | 21 | rspcev 3622 | . . . 4 ⊢ ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
23 | 19, 20, 22 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
24 | 23 | rexlimdv3a 3157 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑥 ≠ 0 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈)) |
25 | 7, 24 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 ⊆ wss 3963 {csn 4631 ‘cfv 6563 Basecbs 17245 0gc0g 17486 LModclmod 20875 LSubSpclss 20947 LSpanclspn 20987 LSAtomsclsa 38956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lsatoms 38958 |
This theorem is referenced by: lsatcvatlem 39031 dochexmidlem5 41447 |
Copyright terms: Public domain | W3C validator |