Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lssatomic | Structured version Visualization version GIF version |
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 30621 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lssatomic.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssatomic.o | ⊢ 0 = (0g‘𝑊) |
lssatomic.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lssatomic.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssatomic.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssatomic.n | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
Ref | Expression |
---|---|
lssatomic | ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssatomic.n | . . 3 ⊢ (𝜑 → 𝑈 ≠ { 0 }) | |
2 | lssatomic.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lssatomic.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
4 | lssatomic.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | 3, 4 | lssne0 20127 | . . . 4 ⊢ (𝑈 ∈ 𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 )) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝑥 ≠ 0 ) |
8 | lssatomic.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
9 | 8 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑊 ∈ LMod) |
10 | 2 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑈 ∈ 𝑆) |
11 | simp2 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝑈) | |
12 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
13 | 12, 4 | lssel 20114 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ (Base‘𝑊)) |
14 | 10, 11, 13 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ (Base‘𝑊)) |
15 | simp3 1136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) | |
16 | eqid 2738 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
17 | lssatomic.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
18 | 12, 16, 3, 17 | lsatlspsn2 36933 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
19 | 9, 14, 15, 18 | syl3anc 1369 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴) |
20 | 4, 16, 9, 10, 11 | lspsnel5a 20173 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) |
21 | sseq1 3942 | . . . . 5 ⊢ (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞 ⊆ 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)) | |
22 | 21 | rspcev 3552 | . . . 4 ⊢ ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
23 | 19, 20, 22 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈 ∧ 𝑥 ≠ 0 ) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
24 | 23 | rexlimdv3a 3214 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝑈 𝑥 ≠ 0 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈)) |
25 | 7, 24 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑞 ∈ 𝐴 𝑞 ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 LSAtomsclsa 36915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lsatoms 36917 |
This theorem is referenced by: lsatcvatlem 36990 dochexmidlem5 39405 |
Copyright terms: Public domain | W3C validator |