Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatomic Structured version   Visualization version   GIF version

Theorem lssatomic 36952
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 30621 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lssatomic.s 𝑆 = (LSubSp‘𝑊)
lssatomic.o 0 = (0g𝑊)
lssatomic.a 𝐴 = (LSAtoms‘𝑊)
lssatomic.w (𝜑𝑊 ∈ LMod)
lssatomic.u (𝜑𝑈𝑆)
lssatomic.n (𝜑𝑈 ≠ { 0 })
Assertion
Ref Expression
lssatomic (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Distinct variable groups:   𝐴,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hints:   𝜑(𝑞)   𝑆(𝑞)   0 (𝑞)

Proof of Theorem lssatomic
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lssatomic.n . . 3 (𝜑𝑈 ≠ { 0 })
2 lssatomic.u . . . 4 (𝜑𝑈𝑆)
3 lssatomic.o . . . . 5 0 = (0g𝑊)
4 lssatomic.s . . . . 5 𝑆 = (LSubSp‘𝑊)
53, 4lssne0 20127 . . . 4 (𝑈𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
62, 5syl 17 . . 3 (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
71, 6mpbid 231 . 2 (𝜑 → ∃𝑥𝑈 𝑥0 )
8 lssatomic.w . . . . . 6 (𝜑𝑊 ∈ LMod)
983ad2ant1 1131 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑊 ∈ LMod)
1023ad2ant1 1131 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑈𝑆)
11 simp2 1135 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑥𝑈)
12 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1312, 4lssel 20114 . . . . . 6 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
1410, 11, 13syl2anc 583 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥 ∈ (Base‘𝑊))
15 simp3 1136 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥0 )
16 eqid 2738 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
17 lssatomic.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
1812, 16, 3, 17lsatlspsn2 36933 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
199, 14, 15, 18syl3anc 1369 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
204, 16, 9, 10, 11lspsnel5a 20173 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
21 sseq1 3942 . . . . 5 (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
2221rspcev 3552 . . . 4 ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞𝐴 𝑞𝑈)
2319, 20, 22syl2anc 583 . . 3 ((𝜑𝑥𝑈𝑥0 ) → ∃𝑞𝐴 𝑞𝑈)
2423rexlimdv3a 3214 . 2 (𝜑 → (∃𝑥𝑈 𝑥0 → ∃𝑞𝐴 𝑞𝑈))
257, 24mpd 15 1 (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  wss 3883  {csn 4558  cfv 6418  Basecbs 16840  0gc0g 17067  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LSAtomsclsa 36915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lsatoms 36917
This theorem is referenced by:  lsatcvatlem  36990  dochexmidlem5  39405
  Copyright terms: Public domain W3C validator