Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssatomic Structured version   Visualization version   GIF version

Theorem lssatomic 37025
Description: The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 30720 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lssatomic.s 𝑆 = (LSubSp‘𝑊)
lssatomic.o 0 = (0g𝑊)
lssatomic.a 𝐴 = (LSAtoms‘𝑊)
lssatomic.w (𝜑𝑊 ∈ LMod)
lssatomic.u (𝜑𝑈𝑆)
lssatomic.n (𝜑𝑈 ≠ { 0 })
Assertion
Ref Expression
lssatomic (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Distinct variable groups:   𝐴,𝑞   𝑈,𝑞   𝑊,𝑞
Allowed substitution hints:   𝜑(𝑞)   𝑆(𝑞)   0 (𝑞)

Proof of Theorem lssatomic
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lssatomic.n . . 3 (𝜑𝑈 ≠ { 0 })
2 lssatomic.u . . . 4 (𝜑𝑈𝑆)
3 lssatomic.o . . . . 5 0 = (0g𝑊)
4 lssatomic.s . . . . 5 𝑆 = (LSubSp‘𝑊)
53, 4lssne0 20212 . . . 4 (𝑈𝑆 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
62, 5syl 17 . . 3 (𝜑 → (𝑈 ≠ { 0 } ↔ ∃𝑥𝑈 𝑥0 ))
71, 6mpbid 231 . 2 (𝜑 → ∃𝑥𝑈 𝑥0 )
8 lssatomic.w . . . . . 6 (𝜑𝑊 ∈ LMod)
983ad2ant1 1132 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑊 ∈ LMod)
1023ad2ant1 1132 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑈𝑆)
11 simp2 1136 . . . . . 6 ((𝜑𝑥𝑈𝑥0 ) → 𝑥𝑈)
12 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
1312, 4lssel 20199 . . . . . 6 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
1410, 11, 13syl2anc 584 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥 ∈ (Base‘𝑊))
15 simp3 1137 . . . . 5 ((𝜑𝑥𝑈𝑥0 ) → 𝑥0 )
16 eqid 2738 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
17 lssatomic.a . . . . . 6 𝐴 = (LSAtoms‘𝑊)
1812, 16, 3, 17lsatlspsn2 37006 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
199, 14, 15, 18syl3anc 1370 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴)
204, 16, 9, 10, 11lspsnel5a 20258 . . . 4 ((𝜑𝑥𝑈𝑥0 ) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
21 sseq1 3946 . . . . 5 (𝑞 = ((LSpan‘𝑊)‘{𝑥}) → (𝑞𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
2221rspcev 3561 . . . 4 ((((LSpan‘𝑊)‘{𝑥}) ∈ 𝐴 ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ∃𝑞𝐴 𝑞𝑈)
2319, 20, 22syl2anc 584 . . 3 ((𝜑𝑥𝑈𝑥0 ) → ∃𝑞𝐴 𝑞𝑈)
2423rexlimdv3a 3215 . 2 (𝜑 → (∃𝑥𝑈 𝑥0 → ∃𝑞𝐴 𝑞𝑈))
257, 24mpd 15 1 (𝜑 → ∃𝑞𝐴 𝑞𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  wss 3887  {csn 4561  cfv 6433  Basecbs 16912  0gc0g 17150  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LSAtomsclsa 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lsatoms 36990
This theorem is referenced by:  lsatcvatlem  37063  dochexmidlem5  39478
  Copyright terms: Public domain W3C validator