Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidss Structured version   Visualization version   GIF version

Theorem metidss 31743
Description: As a relation, the metric identification is a subset of a Cartesian product. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidss (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))

Proof of Theorem metidss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metidval 31742 . 2 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)})
2 opabssxp 5669 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑋𝑦𝑋) ∧ (𝑥𝐷𝑦) = 0)} ⊆ (𝑋 × 𝑋)
31, 2eqsstrdi 3971 1 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) ⊆ (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  {copab 5132   × cxp 5578  cfv 6418  (class class class)co 7255  0cc0 10802  PsMetcpsmet 20494  ~Metcmetid 31738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-xr 10944  df-psmet 20502  df-metid 31740
This theorem is referenced by:  metideq  31745  metider  31746  pstmfval  31748
  Copyright terms: Public domain W3C validator