![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metidv | Structured version Visualization version GIF version |
Description: 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
metidv | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2827 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) | |
2 | eleq1 2827 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
3 | 1, 2 | bi2anan9 638 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
4 | oveq12 7440 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎𝐷𝑏) = (𝐴𝐷𝐵)) | |
5 | 4 | eqeq1d 2737 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎𝐷𝑏) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
7 | eqid 2735 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} | |
8 | 6, 7 | brabga 5544 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
9 | 8 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
10 | metidval 33851 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) |
12 | 11 | breqd 5159 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ 𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵)) |
13 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) | |
14 | 13 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
15 | 9, 12, 14 | 3bitr4d 311 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 {copab 5210 ‘cfv 6563 (class class class)co 7431 0cc0 11153 PsMetcpsmet 21366 ~Metcmetid 33847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-xr 11297 df-psmet 21374 df-metid 33849 |
This theorem is referenced by: metideq 33854 metider 33855 pstmfval 33857 pstmxmet 33858 |
Copyright terms: Public domain | W3C validator |