Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > metidv | Structured version Visualization version GIF version |
Description: 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
Ref | Expression |
---|---|
metidv | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) | |
2 | eleq1 2826 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
3 | 1, 2 | bi2anan9 635 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
4 | oveq12 7264 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎𝐷𝑏) = (𝐴𝐷𝐵)) | |
5 | 4 | eqeq1d 2740 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎𝐷𝑏) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
6 | 3, 5 | anbi12d 630 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
7 | eqid 2738 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} | |
8 | 6, 7 | brabga 5440 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
9 | 8 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
10 | metidval 31742 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) |
12 | 11 | breqd 5081 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ 𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵)) |
13 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) | |
14 | 13 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
15 | 9, 12, 14 | 3bitr4d 310 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 {copab 5132 ‘cfv 6418 (class class class)co 7255 0cc0 10802 PsMetcpsmet 20494 ~Metcmetid 31738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-xr 10944 df-psmet 20502 df-metid 31740 |
This theorem is referenced by: metideq 31745 metider 31746 pstmfval 31748 pstmxmet 31749 |
Copyright terms: Public domain | W3C validator |