| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > metidv | Structured version Visualization version GIF version | ||
| Description: 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| Ref | Expression |
|---|---|
| metidv | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) | |
| 2 | eleq1 2816 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
| 4 | oveq12 7396 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎𝐷𝑏) = (𝐴𝐷𝐵)) | |
| 5 | 4 | eqeq1d 2731 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎𝐷𝑏) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 7 | eqid 2729 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} | |
| 8 | 6, 7 | brabga 5494 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 10 | metidval 33880 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) |
| 12 | 11 | breqd 5118 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ 𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵)) |
| 13 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) | |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 15 | 9, 12, 14 | 3bitr4d 311 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 {copab 5169 ‘cfv 6511 (class class class)co 7387 0cc0 11068 PsMetcpsmet 21248 ~Metcmetid 33876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-xr 11212 df-psmet 21256 df-metid 33878 |
| This theorem is referenced by: metideq 33883 metider 33884 pstmfval 33886 pstmxmet 33887 |
| Copyright terms: Public domain | W3C validator |