Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidv Structured version   Visualization version   GIF version

Theorem metidv 33168
Description: 𝐴 and 𝐡 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidv ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴(~Metβ€˜π·)𝐡 ↔ (𝐴𝐷𝐡) = 0))

Proof of Theorem metidv
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2819 . . . . . 6 (π‘Ž = 𝐴 β†’ (π‘Ž ∈ 𝑋 ↔ 𝐴 ∈ 𝑋))
2 eleq1 2819 . . . . . 6 (𝑏 = 𝐡 β†’ (𝑏 ∈ 𝑋 ↔ 𝐡 ∈ 𝑋))
31, 2bi2anan9 635 . . . . 5 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)))
4 oveq12 7422 . . . . . 6 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (π‘Žπ·π‘) = (𝐴𝐷𝐡))
54eqeq1d 2732 . . . . 5 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ ((π‘Žπ·π‘) = 0 ↔ (𝐴𝐷𝐡) = 0))
63, 5anbi12d 629 . . . 4 ((π‘Ž = 𝐴 ∧ 𝑏 = 𝐡) β†’ (((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐷𝐡) = 0)))
7 eqid 2730 . . . 4 {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0)} = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0)}
86, 7brabga 5535 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴{βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0)}𝐡 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐷𝐡) = 0)))
98adantl 480 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴{βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0)}𝐡 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐷𝐡) = 0)))
10 metidval 33166 . . . 4 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (~Metβ€˜π·) = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0)})
1110adantr 479 . . 3 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (~Metβ€˜π·) = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0)})
1211breqd 5160 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴(~Metβ€˜π·)𝐡 ↔ 𝐴{βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (π‘Žπ·π‘) = 0)}𝐡))
13 ibar 527 . . 3 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ ((𝐴𝐷𝐡) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐷𝐡) = 0)))
1413adantl 480 . 2 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ ((𝐴𝐷𝐡) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) ∧ (𝐴𝐷𝐡) = 0)))
159, 12, 143bitr4d 310 1 ((𝐷 ∈ (PsMetβ€˜π‘‹) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ (𝐴(~Metβ€˜π·)𝐡 ↔ (𝐴𝐷𝐡) = 0))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104   class class class wbr 5149  {copab 5211  β€˜cfv 6544  (class class class)co 7413  0cc0 11114  PsMetcpsmet 21130  ~Metcmetid 33162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-xr 11258  df-psmet 21138  df-metid 33164
This theorem is referenced by:  metideq  33169  metider  33170  pstmfval  33172  pstmxmet  33173
  Copyright terms: Public domain W3C validator