Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidv Structured version   Visualization version   GIF version

Theorem metidv 33926
Description: 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidv ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0))

Proof of Theorem metidv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝑋𝐴𝑋))
2 eleq1 2821 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑋𝐵𝑋))
31, 2bi2anan9 638 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑋𝑏𝑋) ↔ (𝐴𝑋𝐵𝑋)))
4 oveq12 7361 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝐷𝑏) = (𝐴𝐷𝐵))
54eqeq1d 2735 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝐷𝑏) = 0 ↔ (𝐴𝐷𝐵) = 0))
63, 5anbi12d 632 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
7 eqid 2733 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}
86, 7brabga 5477 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
98adantl 481 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
10 metidval 33924 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)})
1110adantr 480 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (~Met𝐷) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)})
1211breqd 5104 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵))
13 ibar 528 . . 3 ((𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
1413adantl 481 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
159, 12, 143bitr4d 311 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  {copab 5155  cfv 6486  (class class class)co 7352  0cc0 11013  PsMetcpsmet 21277  ~Metcmetid 33920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-xr 11157  df-psmet 21285  df-metid 33922
This theorem is referenced by:  metideq  33927  metider  33928  pstmfval  33930  pstmxmet  33931
  Copyright terms: Public domain W3C validator