Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metidv Structured version   Visualization version   GIF version

Theorem metidv 33882
Description: 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
Assertion
Ref Expression
metidv ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0))

Proof of Theorem metidv
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . . . . . 6 (𝑎 = 𝐴 → (𝑎𝑋𝐴𝑋))
2 eleq1 2816 . . . . . 6 (𝑏 = 𝐵 → (𝑏𝑋𝐵𝑋))
31, 2bi2anan9 638 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝑋𝑏𝑋) ↔ (𝐴𝑋𝐵𝑋)))
4 oveq12 7396 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎𝐷𝑏) = (𝐴𝐷𝐵))
54eqeq1d 2731 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎𝐷𝑏) = 0 ↔ (𝐴𝐷𝐵) = 0))
63, 5anbi12d 632 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
7 eqid 2729 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}
86, 7brabga 5494 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
98adantl 481 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
10 metidval 33880 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (~Met𝐷) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)})
1110adantr 480 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (~Met𝐷) = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)})
1211breqd 5118 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵𝐴{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑋𝑏𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵))
13 ibar 528 . . 3 ((𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
1413adantl 481 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) = 0)))
159, 12, 143bitr4d 311 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴(~Met𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  0cc0 11068  PsMetcpsmet 21248  ~Metcmetid 33876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-xr 11212  df-psmet 21256  df-metid 33878
This theorem is referenced by:  metideq  33883  metider  33884  pstmfval  33886  pstmxmet  33887
  Copyright terms: Public domain W3C validator