| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > metidv | Structured version Visualization version GIF version | ||
| Description: 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| Ref | Expression |
|---|---|
| metidv | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) | |
| 2 | eleq1 2821 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
| 4 | oveq12 7361 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎𝐷𝑏) = (𝐴𝐷𝐵)) | |
| 5 | 4 | eqeq1d 2735 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎𝐷𝑏) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 7 | eqid 2733 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} | |
| 8 | 6, 7 | brabga 5477 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 10 | metidval 33924 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) |
| 12 | 11 | breqd 5104 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ 𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵)) |
| 13 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) | |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 15 | 9, 12, 14 | 3bitr4d 311 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 {copab 5155 ‘cfv 6486 (class class class)co 7352 0cc0 11013 PsMetcpsmet 21277 ~Metcmetid 33920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-xr 11157 df-psmet 21285 df-metid 33922 |
| This theorem is referenced by: metideq 33927 metider 33928 pstmfval 33930 pstmxmet 33931 |
| Copyright terms: Public domain | W3C validator |