| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > metidv | Structured version Visualization version GIF version | ||
| Description: 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| Ref | Expression |
|---|---|
| metidv | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋)) | |
| 2 | eleq1 2822 | . . . . . 6 ⊢ (𝑏 = 𝐵 → (𝑏 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
| 3 | 1, 2 | bi2anan9 638 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋))) |
| 4 | oveq12 7414 | . . . . . 6 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝑎𝐷𝑏) = (𝐴𝐷𝐵)) | |
| 5 | 4 | eqeq1d 2737 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → ((𝑎𝐷𝑏) = 0 ↔ (𝐴𝐷𝐵) = 0)) |
| 6 | 3, 5 | anbi12d 632 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 7 | eqid 2735 | . . . 4 ⊢ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)} | |
| 8 | 6, 7 | brabga 5509 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 9 | 8 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 10 | metidval 33921 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (~Met‘𝐷) = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}) |
| 12 | 11 | breqd 5130 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ 𝐴{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ (𝑎𝐷𝑏) = 0)}𝐵)) |
| 13 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) | |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) = 0))) |
| 15 | 9, 12, 14 | 3bitr4d 311 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 {copab 5181 ‘cfv 6531 (class class class)co 7405 0cc0 11129 PsMetcpsmet 21299 ~Metcmetid 33917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-xr 11273 df-psmet 21307 df-metid 33919 |
| This theorem is referenced by: metideq 33924 metider 33925 pstmfval 33927 pstmxmet 33928 |
| Copyright terms: Public domain | W3C validator |