MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustel Structured version   Visualization version   GIF version

Theorem metustel 24584
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustel (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem metustel
StepHypRef Expression
1 metust.1 . . 3 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21eleq2i 2836 . 2 (𝐵𝐹𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
3 elex 3509 . . . 4 (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V))
5 cnvexg 7964 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
6 imaexg 7953 . . . . 5 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
7 eleq1a 2839 . . . . 5 ((𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
85, 6, 73syl 18 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
98rexlimdvw 3166 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
10 eqid 2740 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1110elrnmpt 5981 . . . 4 (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
1211a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)))))
134, 9, 12pm5.21ndd 379 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
142, 13bitrid 283 1 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  0cc0 11184  +crp 13057  [,)cico 13409  PsMetcpsmet 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  metustto  24587  metustid  24588  metustexhalf  24590  metustfbas  24591  cfilucfil  24593  metucn  24605
  Copyright terms: Public domain W3C validator