![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metustel | Structured version Visualization version GIF version |
Description: Define a filter base πΉ generated by a metric π·. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metust.1 | β’ πΉ = ran (π β β+ β¦ (β‘π· β (0[,)π))) |
Ref | Expression |
---|---|
metustel | β’ (π· β (PsMetβπ) β (π΅ β πΉ β βπ β β+ π΅ = (β‘π· β (0[,)π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | . . 3 β’ πΉ = ran (π β β+ β¦ (β‘π· β (0[,)π))) | |
2 | 1 | eleq2i 2825 | . 2 β’ (π΅ β πΉ β π΅ β ran (π β β+ β¦ (β‘π· β (0[,)π)))) |
3 | elex 3492 | . . . 4 β’ (π΅ β ran (π β β+ β¦ (β‘π· β (0[,)π))) β π΅ β V) | |
4 | 3 | a1i 11 | . . 3 β’ (π· β (PsMetβπ) β (π΅ β ran (π β β+ β¦ (β‘π· β (0[,)π))) β π΅ β V)) |
5 | cnvexg 7914 | . . . . 5 β’ (π· β (PsMetβπ) β β‘π· β V) | |
6 | imaexg 7905 | . . . . 5 β’ (β‘π· β V β (β‘π· β (0[,)π)) β V) | |
7 | eleq1a 2828 | . . . . 5 β’ ((β‘π· β (0[,)π)) β V β (π΅ = (β‘π· β (0[,)π)) β π΅ β V)) | |
8 | 5, 6, 7 | 3syl 18 | . . . 4 β’ (π· β (PsMetβπ) β (π΅ = (β‘π· β (0[,)π)) β π΅ β V)) |
9 | 8 | rexlimdvw 3160 | . . 3 β’ (π· β (PsMetβπ) β (βπ β β+ π΅ = (β‘π· β (0[,)π)) β π΅ β V)) |
10 | eqid 2732 | . . . . 5 β’ (π β β+ β¦ (β‘π· β (0[,)π))) = (π β β+ β¦ (β‘π· β (0[,)π))) | |
11 | 10 | elrnmpt 5955 | . . . 4 β’ (π΅ β V β (π΅ β ran (π β β+ β¦ (β‘π· β (0[,)π))) β βπ β β+ π΅ = (β‘π· β (0[,)π)))) |
12 | 11 | a1i 11 | . . 3 β’ (π· β (PsMetβπ) β (π΅ β V β (π΅ β ran (π β β+ β¦ (β‘π· β (0[,)π))) β βπ β β+ π΅ = (β‘π· β (0[,)π))))) |
13 | 4, 9, 12 | pm5.21ndd 380 | . 2 β’ (π· β (PsMetβπ) β (π΅ β ran (π β β+ β¦ (β‘π· β (0[,)π))) β βπ β β+ π΅ = (β‘π· β (0[,)π)))) |
14 | 2, 13 | bitrid 282 | 1 β’ (π· β (PsMetβπ) β (π΅ β πΉ β βπ β β+ π΅ = (β‘π· β (0[,)π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 βwrex 3070 Vcvv 3474 β¦ cmpt 5231 β‘ccnv 5675 ran crn 5677 β cima 5679 βcfv 6543 (class class class)co 7408 0cc0 11109 β+crp 12973 [,)cico 13325 PsMetcpsmet 20927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: metustto 24061 metustid 24062 metustexhalf 24064 metustfbas 24065 cfilucfil 24067 metucn 24079 |
Copyright terms: Public domain | W3C validator |