MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustel Structured version   Visualization version   GIF version

Theorem metustel 24438
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustel (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem metustel
StepHypRef Expression
1 metust.1 . . 3 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21eleq2i 2820 . 2 (𝐵𝐹𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
3 elex 3468 . . . 4 (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V))
5 cnvexg 7900 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
6 imaexg 7889 . . . . 5 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
7 eleq1a 2823 . . . . 5 ((𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
85, 6, 73syl 18 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
98rexlimdvw 3139 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
10 eqid 2729 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1110elrnmpt 5922 . . . 4 (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
1211a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)))))
134, 9, 12pm5.21ndd 379 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
142, 13bitrid 283 1 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cmpt 5188  ccnv 5637  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  0cc0 11068  +crp 12951  [,)cico 13308  PsMetcpsmet 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  metustto  24441  metustid  24442  metustexhalf  24444  metustfbas  24445  cfilucfil  24447  metucn  24459
  Copyright terms: Public domain W3C validator