Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metustel | Structured version Visualization version GIF version |
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
Ref | Expression |
---|---|
metustel | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | . . 3 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
3 | elex 3440 | . . . 4 ⊢ (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)) |
5 | cnvexg 7745 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
6 | imaexg 7736 | . . . . 5 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
7 | eleq1a 2834 | . . . . 5 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) | |
8 | 5, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
9 | 8 | rexlimdvw 3218 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
10 | eqid 2738 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
11 | 10 | elrnmpt 5854 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎))))) |
13 | 4, 9, 12 | pm5.21ndd 380 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
14 | 2, 13 | syl5bb 282 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ↦ cmpt 5153 ◡ccnv 5579 ran crn 5581 “ cima 5583 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℝ+crp 12659 [,)cico 13010 PsMetcpsmet 20494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: metustto 23615 metustid 23616 metustexhalf 23618 metustfbas 23619 cfilucfil 23621 metucn 23633 |
Copyright terms: Public domain | W3C validator |