MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustel Structured version   Visualization version   GIF version

Theorem metustel 24463
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustel (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem metustel
StepHypRef Expression
1 metust.1 . . 3 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21eleq2i 2823 . 2 (𝐵𝐹𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
3 elex 3457 . . . 4 (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V))
5 cnvexg 7854 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
6 imaexg 7843 . . . . 5 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
7 eleq1a 2826 . . . . 5 ((𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
85, 6, 73syl 18 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
98rexlimdvw 3138 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
10 eqid 2731 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1110elrnmpt 5898 . . . 4 (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
1211a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)))))
134, 9, 12pm5.21ndd 379 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
142, 13bitrid 283 1 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wrex 3056  Vcvv 3436  cmpt 5172  ccnv 5615  ran crn 5617  cima 5619  cfv 6481  (class class class)co 7346  0cc0 11003  +crp 12887  [,)cico 13244  PsMetcpsmet 21273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-xp 5622  df-rel 5623  df-cnv 5624  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629
This theorem is referenced by:  metustto  24466  metustid  24467  metustexhalf  24469  metustfbas  24470  cfilucfil  24472  metucn  24484
  Copyright terms: Public domain W3C validator