![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metustel | Structured version Visualization version GIF version |
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
Ref | Expression |
---|---|
metustel | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | . . 3 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
3 | elex 3499 | . . . 4 ⊢ (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)) |
5 | cnvexg 7947 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
6 | imaexg 7936 | . . . . 5 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
7 | eleq1a 2834 | . . . . 5 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) | |
8 | 5, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
9 | 8 | rexlimdvw 3158 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
10 | eqid 2735 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
11 | 10 | elrnmpt 5972 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎))))) |
13 | 4, 9, 12 | pm5.21ndd 379 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
14 | 2, 13 | bitrid 283 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ↦ cmpt 5231 ◡ccnv 5688 ran crn 5690 “ cima 5692 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ℝ+crp 13032 [,)cico 13386 PsMetcpsmet 21366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: metustto 24582 metustid 24583 metustexhalf 24585 metustfbas 24586 cfilucfil 24588 metucn 24600 |
Copyright terms: Public domain | W3C validator |