| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metustel | Structured version Visualization version GIF version | ||
| Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| Ref | Expression |
|---|---|
| metustel | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | . . 3 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
| 3 | elex 3468 | . . . 4 ⊢ (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)) |
| 5 | cnvexg 7900 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
| 6 | imaexg 7889 | . . . . 5 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
| 7 | eleq1a 2823 | . . . . 5 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) | |
| 8 | 5, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
| 9 | 8 | rexlimdvw 3139 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
| 10 | eqid 2729 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 11 | 10 | elrnmpt 5922 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎))))) |
| 13 | 4, 9, 12 | pm5.21ndd 379 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
| 14 | 2, 13 | bitrid 283 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ↦ cmpt 5188 ◡ccnv 5637 ran crn 5639 “ cima 5641 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℝ+crp 12951 [,)cico 13308 PsMetcpsmet 21248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: metustto 24441 metustid 24442 metustexhalf 24444 metustfbas 24445 cfilucfil 24447 metucn 24459 |
| Copyright terms: Public domain | W3C validator |