MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustel Structured version   Visualization version   GIF version

Theorem metustel 24058
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))
Assertion
Ref Expression
metustel (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐡 ∈ 𝐹 ↔ βˆƒπ‘Ž ∈ ℝ+ 𝐡 = (◑𝐷 β€œ (0[,)π‘Ž))))
Distinct variable groups:   𝐡,π‘Ž   𝐷,π‘Ž   𝑋,π‘Ž
Allowed substitution hint:   𝐹(π‘Ž)

Proof of Theorem metustel
StepHypRef Expression
1 metust.1 . . 3 𝐹 = ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))
21eleq2i 2825 . 2 (𝐡 ∈ 𝐹 ↔ 𝐡 ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))))
3 elex 3492 . . . 4 (𝐡 ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) β†’ 𝐡 ∈ V)
43a1i 11 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐡 ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) β†’ 𝐡 ∈ V))
5 cnvexg 7914 . . . . 5 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ ◑𝐷 ∈ V)
6 imaexg 7905 . . . . 5 (◑𝐷 ∈ V β†’ (◑𝐷 β€œ (0[,)π‘Ž)) ∈ V)
7 eleq1a 2828 . . . . 5 ((◑𝐷 β€œ (0[,)π‘Ž)) ∈ V β†’ (𝐡 = (◑𝐷 β€œ (0[,)π‘Ž)) β†’ 𝐡 ∈ V))
85, 6, 73syl 18 . . . 4 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐡 = (◑𝐷 β€œ (0[,)π‘Ž)) β†’ 𝐡 ∈ V))
98rexlimdvw 3160 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (βˆƒπ‘Ž ∈ ℝ+ 𝐡 = (◑𝐷 β€œ (0[,)π‘Ž)) β†’ 𝐡 ∈ V))
10 eqid 2732 . . . . 5 (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) = (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž)))
1110elrnmpt 5955 . . . 4 (𝐡 ∈ V β†’ (𝐡 ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) ↔ βˆƒπ‘Ž ∈ ℝ+ 𝐡 = (◑𝐷 β€œ (0[,)π‘Ž))))
1211a1i 11 . . 3 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐡 ∈ V β†’ (𝐡 ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) ↔ βˆƒπ‘Ž ∈ ℝ+ 𝐡 = (◑𝐷 β€œ (0[,)π‘Ž)))))
134, 9, 12pm5.21ndd 380 . 2 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐡 ∈ ran (π‘Ž ∈ ℝ+ ↦ (◑𝐷 β€œ (0[,)π‘Ž))) ↔ βˆƒπ‘Ž ∈ ℝ+ 𝐡 = (◑𝐷 β€œ (0[,)π‘Ž))))
142, 13bitrid 282 1 (𝐷 ∈ (PsMetβ€˜π‘‹) β†’ (𝐡 ∈ 𝐹 ↔ βˆƒπ‘Ž ∈ ℝ+ 𝐡 = (◑𝐷 β€œ (0[,)π‘Ž))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  Vcvv 3474   ↦ cmpt 5231  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679  β€˜cfv 6543  (class class class)co 7408  0cc0 11109  β„+crp 12973  [,)cico 13325  PsMetcpsmet 20927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689
This theorem is referenced by:  metustto  24061  metustid  24062  metustexhalf  24064  metustfbas  24065  cfilucfil  24067  metucn  24079
  Copyright terms: Public domain W3C validator