MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpress Structured version   Visualization version   GIF version

Theorem mgpress 19911
Description: Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . 3 𝑀 = (mulGrp‘𝑅)
2 simpr 485 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (Base‘𝑅) ⊆ 𝐴)
31fvexi 6856 . . . . 5 𝑀 ∈ V
43a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
5 simplr 767 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
6 eqid 2736 . . . . 5 (𝑀s 𝐴) = (𝑀s 𝐴)
7 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
81, 7mgpbas 19902 . . . . 5 (Base‘𝑅) = (Base‘𝑀)
96, 8ressid2 17116 . . . 4 (((Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = 𝑀)
102, 4, 5, 9syl3anc 1371 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = 𝑀)
11 simpll 765 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
12 mgpress.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
1312, 7ressid2 17116 . . . . 5 (((Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = 𝑅)
142, 11, 5, 13syl3anc 1371 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = 𝑅)
1514fveq2d 6846 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = (mulGrp‘𝑅))
161, 10, 153eqtr4a 2802 . 2 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
17 eqid 2736 . . . . 5 (.r𝑅) = (.r𝑅)
181, 17mgpval 19899 . . . 4 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)
1918oveq1i 7367 . . 3 (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩)
20 simpr 485 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ¬ (Base‘𝑅) ⊆ 𝐴)
213a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
22 simplr 767 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
236, 8ressval2 17117 . . . 4 ((¬ (Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
2420, 21, 22, 23syl3anc 1371 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
25 eqid 2736 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
26 eqid 2736 . . . . . 6 (.r𝑆) = (.r𝑆)
2725, 26mgpval 19899 . . . . 5 (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩)
28 simpll 765 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
2912, 7ressval2 17117 . . . . . . 7 ((¬ (Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3020, 28, 22, 29syl3anc 1371 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3112, 17ressmulr 17188 . . . . . . . . 9 (𝐴𝑊 → (.r𝑅) = (.r𝑆))
3231eqcomd 2742 . . . . . . . 8 (𝐴𝑊 → (.r𝑆) = (.r𝑅))
3332ad2antlr 725 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (.r𝑆) = (.r𝑅))
3433opeq2d 4837 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
3530, 34oveq12d 7375 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
3627, 35eqtrid 2788 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
37 basendxnplusgndx 17163 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
3837necomi 2998 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
39 fvex 6855 . . . . . 6 (.r𝑅) ∈ V
40 fvex 6855 . . . . . . 7 (Base‘𝑅) ∈ V
4140inex2 5275 . . . . . 6 (𝐴 ∩ (Base‘𝑅)) ∈ V
42 fvex 6855 . . . . . . 7 (+g‘ndx) ∈ V
43 fvex 6855 . . . . . . 7 (Base‘ndx) ∈ V
4442, 43setscom 17052 . . . . . 6 (((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) ∧ ((.r𝑅) ∈ V ∧ (𝐴 ∩ (Base‘𝑅)) ∈ V)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4539, 41, 44mpanr12 703 . . . . 5 ((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4628, 38, 45sylancl 586 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4736, 46eqtr4d 2779 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
4819, 24, 473eqtr4a 2802 . 2 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
4916, 48pm2.61dan 811 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  cin 3909  wss 3910  cop 4592  cfv 6496  (class class class)co 7357   sSet csts 17035  ndxcnx 17065  Basecbs 17083  s cress 17112  +gcplusg 17133  .rcmulr 17134  mulGrpcmgp 19896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-mgp 19897
This theorem is referenced by:  subrgcrng  20226  subrgsubm  20235  resrhm  20251  subdrgint  20270  nn0srg  20867  rge0srg  20868  zringmpg  20892  m2cpmmhm  22094  cntrcrng  31904  rdivmuldivd  32071  xrge0iifmhm  32520  xrge0pluscn  32521  xrge0tmd  32526  resrhm2b  40693
  Copyright terms: Public domain W3C validator