Proof of Theorem mgpress
Step | Hyp | Ref
| Expression |
1 | | mgpress.2 |
. . 3
⊢ 𝑀 = (mulGrp‘𝑅) |
2 | | simpr 484 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (Base‘𝑅) ⊆ 𝐴) |
3 | 1 | fvexi 6770 |
. . . . 5
⊢ 𝑀 ∈ V |
4 | 3 | a1i 11 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V) |
5 | | simplr 765 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝐴 ∈ 𝑊) |
6 | | eqid 2738 |
. . . . 5
⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) |
7 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | 1, 7 | mgpbas 19641 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑀) |
9 | 6, 8 | ressid2 16871 |
. . . 4
⊢
(((Base‘𝑅)
⊆ 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = 𝑀) |
10 | 2, 4, 5, 9 | syl3anc 1369 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = 𝑀) |
11 | | simpll 763 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑅 ∈ 𝑉) |
12 | | mgpress.1 |
. . . . . 6
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
13 | 12, 7 | ressid2 16871 |
. . . . 5
⊢
(((Base‘𝑅)
⊆ 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑆 = 𝑅) |
14 | 2, 11, 5, 13 | syl3anc 1369 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = 𝑅) |
15 | 14 | fveq2d 6760 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = (mulGrp‘𝑅)) |
16 | 1, 10, 15 | 3eqtr4a 2805 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) |
17 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
18 | 1, 17 | mgpval 19638 |
. . . 4
⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) |
19 | 18 | oveq1i 7265 |
. . 3
⊢ (𝑀 sSet 〈(Base‘ndx),
(𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) |
20 | | simpr 484 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ¬ (Base‘𝑅) ⊆ 𝐴) |
21 | 3 | a1i 11 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V) |
22 | | simplr 765 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝐴 ∈ 𝑊) |
23 | 6, 8 | ressval2 16872 |
. . . 4
⊢ ((¬
(Base‘𝑅) ⊆
𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = (𝑀 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
24 | 20, 21, 22, 23 | syl3anc 1369 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = (𝑀 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
25 | | eqid 2738 |
. . . . . 6
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
26 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑆) = (.r‘𝑆) |
27 | 25, 26 | mgpval 19638 |
. . . . 5
⊢
(mulGrp‘𝑆) =
(𝑆 sSet
〈(+g‘ndx), (.r‘𝑆)〉) |
28 | | simpll 763 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑅 ∈ 𝑉) |
29 | 12, 7 | ressval2 16872 |
. . . . . . 7
⊢ ((¬
(Base‘𝑅) ⊆
𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑆 = (𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
30 | 20, 28, 22, 29 | syl3anc 1369 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = (𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
31 | 12, 17 | ressmulr 16943 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑊 → (.r‘𝑅) = (.r‘𝑆)) |
32 | 31 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑊 → (.r‘𝑆) = (.r‘𝑅)) |
33 | 32 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (.r‘𝑆) = (.r‘𝑅)) |
34 | 33 | opeq2d 4808 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 〈(+g‘ndx),
(.r‘𝑆)〉 = 〈(+g‘ndx),
(.r‘𝑅)〉) |
35 | 30, 34 | oveq12d 7273 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑆 sSet 〈(+g‘ndx),
(.r‘𝑆)〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
36 | 27, 35 | eqtrid 2790 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
37 | | basendxnplusgndx 16918 |
. . . . . 6
⊢
(Base‘ndx) ≠ (+g‘ndx) |
38 | 37 | necomi 2997 |
. . . . 5
⊢
(+g‘ndx) ≠ (Base‘ndx) |
39 | | fvex 6769 |
. . . . . 6
⊢
(.r‘𝑅) ∈ V |
40 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘𝑅)
∈ V |
41 | 40 | inex2 5237 |
. . . . . 6
⊢ (𝐴 ∩ (Base‘𝑅)) ∈ V |
42 | | fvex 6769 |
. . . . . . 7
⊢
(+g‘ndx) ∈ V |
43 | | fvex 6769 |
. . . . . . 7
⊢
(Base‘ndx) ∈ V |
44 | 42, 43 | setscom 16809 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ (+g‘ndx) ≠
(Base‘ndx)) ∧ ((.r‘𝑅) ∈ V ∧ (𝐴 ∩ (Base‘𝑅)) ∈ V)) → ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
45 | 39, 41, 44 | mpanr12 701 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (+g‘ndx) ≠
(Base‘ndx)) → ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
46 | 28, 38, 45 | sylancl 585 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
47 | 36, 46 | eqtr4d 2781 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
48 | 19, 24, 47 | 3eqtr4a 2805 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) |
49 | 16, 48 | pm2.61dan 809 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) |