MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpress Structured version   Visualization version   GIF version

Theorem mgpress 20035
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . 3 𝑀 = (mulGrp‘𝑅)
2 simpr 484 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (Base‘𝑅) ⊆ 𝐴)
31fvexi 6836 . . . . 5 𝑀 ∈ V
43a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
5 simplr 768 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
6 eqid 2729 . . . . 5 (𝑀s 𝐴) = (𝑀s 𝐴)
7 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
81, 7mgpbas 20030 . . . . 5 (Base‘𝑅) = (Base‘𝑀)
96, 8ressid2 17145 . . . 4 (((Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = 𝑀)
102, 4, 5, 9syl3anc 1373 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = 𝑀)
11 simpll 766 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
12 mgpress.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
1312, 7ressid2 17145 . . . . 5 (((Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = 𝑅)
142, 11, 5, 13syl3anc 1373 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = 𝑅)
1514fveq2d 6826 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = (mulGrp‘𝑅))
161, 10, 153eqtr4a 2790 . 2 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
17 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
181, 17mgpval 20028 . . . 4 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)
1918oveq1i 7359 . . 3 (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩)
20 simpr 484 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ¬ (Base‘𝑅) ⊆ 𝐴)
213a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
22 simplr 768 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
236, 8ressval2 17146 . . . 4 ((¬ (Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
2420, 21, 22, 23syl3anc 1373 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
25 eqid 2729 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
26 eqid 2729 . . . . . 6 (.r𝑆) = (.r𝑆)
2725, 26mgpval 20028 . . . . 5 (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩)
28 simpll 766 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
2912, 7ressval2 17146 . . . . . . 7 ((¬ (Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3020, 28, 22, 29syl3anc 1373 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3112, 17ressmulr 17211 . . . . . . . . 9 (𝐴𝑊 → (.r𝑅) = (.r𝑆))
3231eqcomd 2735 . . . . . . . 8 (𝐴𝑊 → (.r𝑆) = (.r𝑅))
3332ad2antlr 727 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (.r𝑆) = (.r𝑅))
3433opeq2d 4831 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
3530, 34oveq12d 7367 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
3627, 35eqtrid 2776 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
37 basendxnplusgndx 17191 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
3837necomi 2979 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
39 fvex 6835 . . . . . 6 (.r𝑅) ∈ V
40 fvex 6835 . . . . . . 7 (Base‘𝑅) ∈ V
4140inex2 5257 . . . . . 6 (𝐴 ∩ (Base‘𝑅)) ∈ V
42 fvex 6835 . . . . . . 7 (+g‘ndx) ∈ V
43 fvex 6835 . . . . . . 7 (Base‘ndx) ∈ V
4442, 43setscom 17091 . . . . . 6 (((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) ∧ ((.r𝑅) ∈ V ∧ (𝐴 ∩ (Base‘𝑅)) ∈ V)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4539, 41, 44mpanr12 705 . . . . 5 ((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4628, 38, 45sylancl 586 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4736, 46eqtr4d 2767 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
4819, 24, 473eqtr4a 2790 . 2 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
4916, 48pm2.61dan 812 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  cin 3902  wss 3903  cop 4583  cfv 6482  (class class class)co 7349   sSet csts 17074  ndxcnx 17104  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162  mulGrpcmgp 20025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-mgp 20026
This theorem is referenced by:  rdivmuldivd  20298  subrgcrng  20460  subrgsubm  20470  resrhm  20486  resrhm2b  20487  subdrgint  20688  nn0srg  21344  rge0srg  21345  zringmpg  21378  m2cpmmhm  22630  cntrcrng  33024  ressply1evls1  33501  2sqr3minply  33753  xrge0iifmhm  33912  xrge0pluscn  33913  xrge0tmd  33918
  Copyright terms: Public domain W3C validator