MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpress Structured version   Visualization version   GIF version

Theorem mgpress 19469
Description: Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . 3 𝑀 = (mulGrp‘𝑅)
2 simpr 488 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (Base‘𝑅) ⊆ 𝐴)
31fvexi 6709 . . . . 5 𝑀 ∈ V
43a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
5 simplr 769 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
6 eqid 2736 . . . . 5 (𝑀s 𝐴) = (𝑀s 𝐴)
7 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
81, 7mgpbas 19464 . . . . 5 (Base‘𝑅) = (Base‘𝑀)
96, 8ressid2 16736 . . . 4 (((Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = 𝑀)
102, 4, 5, 9syl3anc 1373 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = 𝑀)
11 simpll 767 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
12 mgpress.1 . . . . . 6 𝑆 = (𝑅s 𝐴)
1312, 7ressid2 16736 . . . . 5 (((Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = 𝑅)
142, 11, 5, 13syl3anc 1373 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = 𝑅)
1514fveq2d 6699 . . 3 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = (mulGrp‘𝑅))
161, 10, 153eqtr4a 2797 . 2 (((𝑅𝑉𝐴𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
17 eqid 2736 . . . . 5 (.r𝑅) = (.r𝑅)
181, 17mgpval 19461 . . . 4 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩)
1918oveq1i 7201 . . 3 (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩)
20 simpr 488 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ¬ (Base‘𝑅) ⊆ 𝐴)
213a1i 11 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V)
22 simplr 769 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝐴𝑊)
236, 8ressval2 16737 . . . 4 ((¬ (Base‘𝑅) ⊆ 𝐴𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
2420, 21, 22, 23syl3anc 1373 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
25 eqid 2736 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
26 eqid 2736 . . . . . 6 (.r𝑆) = (.r𝑆)
2725, 26mgpval 19461 . . . . 5 (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩)
28 simpll 767 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑅𝑉)
2912, 7ressval2 16737 . . . . . . 7 ((¬ (Base‘𝑅) ⊆ 𝐴𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3020, 28, 22, 29syl3anc 1373 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
3112, 17ressmulr 16809 . . . . . . . . 9 (𝐴𝑊 → (.r𝑅) = (.r𝑆))
3231eqcomd 2742 . . . . . . . 8 (𝐴𝑊 → (.r𝑆) = (.r𝑅))
3332ad2antlr 727 . . . . . . 7 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (.r𝑆) = (.r𝑅))
3433opeq2d 4777 . . . . . 6 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
3530, 34oveq12d 7209 . . . . 5 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
3627, 35syl5eq 2783 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
37 1ne2 12003 . . . . . . 7 1 ≠ 2
3837necomi 2986 . . . . . 6 2 ≠ 1
39 plusgndx 16779 . . . . . . 7 (+g‘ndx) = 2
40 basendx 16730 . . . . . . 7 (Base‘ndx) = 1
4139, 40neeq12i 2998 . . . . . 6 ((+g‘ndx) ≠ (Base‘ndx) ↔ 2 ≠ 1)
4238, 41mpbir 234 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
43 fvex 6708 . . . . . 6 (.r𝑅) ∈ V
44 fvex 6708 . . . . . . 7 (Base‘𝑅) ∈ V
4544inex2 5196 . . . . . 6 (𝐴 ∩ (Base‘𝑅)) ∈ V
46 fvex 6708 . . . . . . 7 (+g‘ndx) ∈ V
47 fvex 6708 . . . . . . 7 (Base‘ndx) ∈ V
4846, 47setscom 16709 . . . . . 6 (((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) ∧ ((.r𝑅) ∈ V ∧ (𝐴 ∩ (Base‘𝑅)) ∈ V)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4943, 45, 48mpanr12 705 . . . . 5 ((𝑅𝑉 ∧ (+g‘ndx) ≠ (Base‘ndx)) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
5028, 42, 49sylancl 589 . . . 4 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
5136, 50eqtr4d 2774 . . 3 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
5219, 24, 513eqtr4a 2797 . 2 (((𝑅𝑉𝐴𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀s 𝐴) = (mulGrp‘𝑆))
5316, 52pm2.61dan 813 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  Vcvv 3398  cin 3852  wss 3853  cop 4533  cfv 6358  (class class class)co 7191  1c1 10695  2c2 11850  ndxcnx 16663   sSet csts 16664  Basecbs 16666  s cress 16667  +gcplusg 16749  .rcmulr 16750  mulGrpcmgp 19458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-mgp 19459
This theorem is referenced by:  subrgcrng  19758  subrgsubm  19767  resrhm  19783  subdrgint  19801  nn0srg  20387  rge0srg  20388  zringmpg  20412  m2cpmmhm  21596  cntrcrng  30995  rdivmuldivd  31161  xrge0iifmhm  31557  xrge0pluscn  31558  xrge0tmd  31563
  Copyright terms: Public domain W3C validator