Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgplemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsplusg 19050 as of 18-Oct-2024. Lemma for mgpbas 19820. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgplemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
mgplemOLD.3 | ⊢ 𝑁 ∈ ℕ |
mgplemOLD.4 | ⊢ 𝑁 ≠ 2 |
Ref | Expression |
---|---|
mgplemOLD | ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgplemOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | mgplemOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16995 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | mgplemOLD.4 | . . . 4 ⊢ 𝑁 ≠ 2 | |
5 | 1, 2 | ndxarg 16994 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
6 | plusgndx 17085 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
7 | 5, 6 | neeq12i 3008 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (+g‘ndx) ↔ 𝑁 ≠ 2) |
8 | 4, 7 | mpbir 230 | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
9 | 3, 8 | setsnid 17007 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
10 | mgpbas.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
11 | eqid 2737 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 10, 11 | mgpval 19817 | . . 3 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉) |
13 | 12 | fveq2i 6832 | . 2 ⊢ (𝐸‘𝑀) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
14 | 9, 13 | eqtr4i 2768 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ≠ wne 2941 〈cop 4583 ‘cfv 6483 (class class class)co 7341 ℕcn 12078 2c2 12133 sSet csts 16961 Slot cslot 16979 ndxcnx 16991 +gcplusg 17059 .rcmulr 17060 mulGrpcmgp 19814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-1cn 11034 ax-addcl 11036 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-nn 12079 df-2 12141 df-sets 16962 df-slot 16980 df-ndx 16992 df-plusg 17072 df-mgp 19815 |
This theorem is referenced by: mgpbasOLD 19821 mgpscaOLD 19823 mgptsetOLD 19825 mgpdsOLD 19828 |
Copyright terms: Public domain | W3C validator |