![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgplemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsplusg 19313 as of 18-Oct-2024. Lemma for mgpbas 20092. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgplemOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
mgplemOLD.3 | ⊢ 𝑁 ∈ ℕ |
mgplemOLD.4 | ⊢ 𝑁 ≠ 2 |
Ref | Expression |
---|---|
mgplemOLD | ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgplemOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | mgplemOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 17169 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | mgplemOLD.4 | . . . 4 ⊢ 𝑁 ≠ 2 | |
5 | 1, 2 | ndxarg 17168 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
6 | plusgndx 17262 | . . . . 5 ⊢ (+g‘ndx) = 2 | |
7 | 5, 6 | neeq12i 2996 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (+g‘ndx) ↔ 𝑁 ≠ 2) |
8 | 4, 7 | mpbir 230 | . . 3 ⊢ (𝐸‘ndx) ≠ (+g‘ndx) |
9 | 3, 8 | setsnid 17181 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
10 | mgpbas.1 | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
11 | eqid 2725 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 10, 11 | mgpval 20089 | . . 3 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉) |
13 | 12 | fveq2i 6899 | . 2 ⊢ (𝐸‘𝑀) = (𝐸‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
14 | 9, 13 | eqtr4i 2756 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ≠ wne 2929 〈cop 4636 ‘cfv 6549 (class class class)co 7419 ℕcn 12245 2c2 12300 sSet csts 17135 Slot cslot 17153 ndxcnx 17165 +gcplusg 17236 .rcmulr 17237 mulGrpcmgp 20086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-1cn 11198 ax-addcl 11200 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12246 df-2 12308 df-sets 17136 df-slot 17154 df-ndx 17166 df-plusg 17249 df-mgp 20087 |
This theorem is referenced by: mgpbasOLD 20093 mgpscaOLD 20095 mgptsetOLD 20097 mgpdsOLD 20100 |
Copyright terms: Public domain | W3C validator |