![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgplemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsplusg 19266 as of 18-Oct-2024. Lemma for mgpbas 20045. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mgpbas.1 | β’ π = (mulGrpβπ ) |
mgplemOLD.2 | β’ πΈ = Slot π |
mgplemOLD.3 | β’ π β β |
mgplemOLD.4 | β’ π β 2 |
Ref | Expression |
---|---|
mgplemOLD | β’ (πΈβπ ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgplemOLD.2 | . . . 4 β’ πΈ = Slot π | |
2 | mgplemOLD.3 | . . . 4 β’ π β β | |
3 | 1, 2 | ndxid 17139 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | mgplemOLD.4 | . . . 4 β’ π β 2 | |
5 | 1, 2 | ndxarg 17138 | . . . . 5 β’ (πΈβndx) = π |
6 | plusgndx 17232 | . . . . 5 β’ (+gβndx) = 2 | |
7 | 5, 6 | neeq12i 3001 | . . . 4 β’ ((πΈβndx) β (+gβndx) β π β 2) |
8 | 4, 7 | mpbir 230 | . . 3 β’ (πΈβndx) β (+gβndx) |
9 | 3, 8 | setsnid 17151 | . 2 β’ (πΈβπ ) = (πΈβ(π sSet β¨(+gβndx), (.rβπ )β©)) |
10 | mgpbas.1 | . . . 4 β’ π = (mulGrpβπ ) | |
11 | eqid 2726 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
12 | 10, 11 | mgpval 20042 | . . 3 β’ π = (π sSet β¨(+gβndx), (.rβπ )β©) |
13 | 12 | fveq2i 6888 | . 2 β’ (πΈβπ) = (πΈβ(π sSet β¨(+gβndx), (.rβπ )β©)) |
14 | 9, 13 | eqtr4i 2757 | 1 β’ (πΈβπ ) = (πΈβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 β wne 2934 β¨cop 4629 βcfv 6537 (class class class)co 7405 βcn 12216 2c2 12271 sSet csts 17105 Slot cslot 17123 ndxcnx 17135 +gcplusg 17206 .rcmulr 17207 mulGrpcmgp 20039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-plusg 17219 df-mgp 20040 |
This theorem is referenced by: mgpbasOLD 20046 mgpscaOLD 20048 mgptsetOLD 20050 mgpdsOLD 20053 |
Copyright terms: Public domain | W3C validator |