![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgplemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of setsplusg 19305 as of 18-Oct-2024. Lemma for mgpbas 20084. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mgpbas.1 | β’ π = (mulGrpβπ ) |
mgplemOLD.2 | β’ πΈ = Slot π |
mgplemOLD.3 | β’ π β β |
mgplemOLD.4 | β’ π β 2 |
Ref | Expression |
---|---|
mgplemOLD | β’ (πΈβπ ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgplemOLD.2 | . . . 4 β’ πΈ = Slot π | |
2 | mgplemOLD.3 | . . . 4 β’ π β β | |
3 | 1, 2 | ndxid 17165 | . . 3 β’ πΈ = Slot (πΈβndx) |
4 | mgplemOLD.4 | . . . 4 β’ π β 2 | |
5 | 1, 2 | ndxarg 17164 | . . . . 5 β’ (πΈβndx) = π |
6 | plusgndx 17258 | . . . . 5 β’ (+gβndx) = 2 | |
7 | 5, 6 | neeq12i 2997 | . . . 4 β’ ((πΈβndx) β (+gβndx) β π β 2) |
8 | 4, 7 | mpbir 230 | . . 3 β’ (πΈβndx) β (+gβndx) |
9 | 3, 8 | setsnid 17177 | . 2 β’ (πΈβπ ) = (πΈβ(π sSet β¨(+gβndx), (.rβπ )β©)) |
10 | mgpbas.1 | . . . 4 β’ π = (mulGrpβπ ) | |
11 | eqid 2725 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
12 | 10, 11 | mgpval 20081 | . . 3 β’ π = (π sSet β¨(+gβndx), (.rβπ )β©) |
13 | 12 | fveq2i 6895 | . 2 β’ (πΈβπ) = (πΈβ(π sSet β¨(+gβndx), (.rβπ )β©)) |
14 | 9, 13 | eqtr4i 2756 | 1 β’ (πΈβπ ) = (πΈβπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β wcel 2098 β wne 2930 β¨cop 4630 βcfv 6543 (class class class)co 7416 βcn 12242 2c2 12297 sSet csts 17131 Slot cslot 17149 ndxcnx 17161 +gcplusg 17232 .rcmulr 17233 mulGrpcmgp 20078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-1cn 11196 ax-addcl 11198 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-plusg 17245 df-mgp 20079 |
This theorem is referenced by: mgpbasOLD 20085 mgpscaOLD 20087 mgptsetOLD 20089 mgpdsOLD 20092 |
Copyright terms: Public domain | W3C validator |