MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgpressOLD Structured version   Visualization version   GIF version

Theorem mgpressOLD 20002
Description: Obsolete version of mgpress 20001 as of 18-Oct-2024. Subgroup commutes with the multiplication group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅 β†Ύs 𝐴)
mgpress.2 𝑀 = (mulGrpβ€˜π‘…)
Assertion
Ref Expression
mgpressOLD ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜π‘†))

Proof of Theorem mgpressOLD
StepHypRef Expression
1 mgpress.2 . . 3 𝑀 = (mulGrpβ€˜π‘…)
2 simpr 485 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (Baseβ€˜π‘…) βŠ† 𝐴)
31fvexi 6905 . . . . 5 𝑀 ∈ V
43a1i 11 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝑀 ∈ V)
5 simplr 767 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝐴 ∈ π‘Š)
6 eqid 2732 . . . . 5 (𝑀 β†Ύs 𝐴) = (𝑀 β†Ύs 𝐴)
7 eqid 2732 . . . . . 6 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
81, 7mgpbas 19992 . . . . 5 (Baseβ€˜π‘…) = (Baseβ€˜π‘€)
96, 8ressid2 17176 . . . 4 (((Baseβ€˜π‘…) βŠ† 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = 𝑀)
102, 4, 5, 9syl3anc 1371 . . 3 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (𝑀 β†Ύs 𝐴) = 𝑀)
11 simpll 765 . . . . 5 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝑅 ∈ 𝑉)
12 mgpress.1 . . . . . 6 𝑆 = (𝑅 β†Ύs 𝐴)
1312, 7ressid2 17176 . . . . 5 (((Baseβ€˜π‘…) βŠ† 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ 𝑆 = 𝑅)
142, 11, 5, 13syl3anc 1371 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝑆 = 𝑅)
1514fveq2d 6895 . . 3 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (mulGrpβ€˜π‘†) = (mulGrpβ€˜π‘…))
161, 10, 153eqtr4a 2798 . 2 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜π‘†))
17 eqid 2732 . . . . 5 (.rβ€˜π‘…) = (.rβ€˜π‘…)
181, 17mgpval 19989 . . . 4 𝑀 = (𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩)
1918oveq1i 7418 . . 3 (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) = ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩)
20 simpr 485 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴)
213a1i 11 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝑀 ∈ V)
22 simplr 767 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝐴 ∈ π‘Š)
236, 8ressval2 17177 . . . 4 ((Β¬ (Baseβ€˜π‘…) βŠ† 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
2420, 21, 22, 23syl3anc 1371 . . 3 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (𝑀 β†Ύs 𝐴) = (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
25 eqid 2732 . . . . . 6 (mulGrpβ€˜π‘†) = (mulGrpβ€˜π‘†)
26 eqid 2732 . . . . . 6 (.rβ€˜π‘†) = (.rβ€˜π‘†)
2725, 26mgpval 19989 . . . . 5 (mulGrpβ€˜π‘†) = (𝑆 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘†)⟩)
28 simpll 765 . . . . . . 7 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝑅 ∈ 𝑉)
2912, 7ressval2 17177 . . . . . . 7 ((Β¬ (Baseβ€˜π‘…) βŠ† 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ 𝑆 = (𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
3020, 28, 22, 29syl3anc 1371 . . . . . 6 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ 𝑆 = (𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
3112, 17ressmulr 17251 . . . . . . . . 9 (𝐴 ∈ π‘Š β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
3231eqcomd 2738 . . . . . . . 8 (𝐴 ∈ π‘Š β†’ (.rβ€˜π‘†) = (.rβ€˜π‘…))
3332ad2antlr 725 . . . . . . 7 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (.rβ€˜π‘†) = (.rβ€˜π‘…))
3433opeq2d 4880 . . . . . 6 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ ⟨(+gβ€˜ndx), (.rβ€˜π‘†)⟩ = ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩)
3530, 34oveq12d 7426 . . . . 5 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (𝑆 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘†)⟩) = ((𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
3627, 35eqtrid 2784 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (mulGrpβ€˜π‘†) = ((𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
37 1ne2 12419 . . . . . . 7 1 β‰  2
3837necomi 2995 . . . . . 6 2 β‰  1
39 plusgndx 17222 . . . . . . 7 (+gβ€˜ndx) = 2
40 basendx 17152 . . . . . . 7 (Baseβ€˜ndx) = 1
4139, 40neeq12i 3007 . . . . . 6 ((+gβ€˜ndx) β‰  (Baseβ€˜ndx) ↔ 2 β‰  1)
4238, 41mpbir 230 . . . . 5 (+gβ€˜ndx) β‰  (Baseβ€˜ndx)
43 fvex 6904 . . . . . 6 (.rβ€˜π‘…) ∈ V
44 fvex 6904 . . . . . . 7 (Baseβ€˜π‘…) ∈ V
4544inex2 5318 . . . . . 6 (𝐴 ∩ (Baseβ€˜π‘…)) ∈ V
46 fvex 6904 . . . . . . 7 (+gβ€˜ndx) ∈ V
47 fvex 6904 . . . . . . 7 (Baseβ€˜ndx) ∈ V
4846, 47setscom 17112 . . . . . 6 (((𝑅 ∈ 𝑉 ∧ (+gβ€˜ndx) β‰  (Baseβ€˜ndx)) ∧ ((.rβ€˜π‘…) ∈ V ∧ (𝐴 ∩ (Baseβ€˜π‘…)) ∈ V)) β†’ ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) = ((𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
4943, 45, 48mpanr12 703 . . . . 5 ((𝑅 ∈ 𝑉 ∧ (+gβ€˜ndx) β‰  (Baseβ€˜ndx)) β†’ ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) = ((𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
5028, 42, 49sylancl 586 . . . 4 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) = ((𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
5136, 50eqtr4d 2775 . . 3 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (mulGrpβ€˜π‘†) = ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
5219, 24, 513eqtr4a 2798 . 2 (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) ∧ Β¬ (Baseβ€˜π‘…) βŠ† 𝐴) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜π‘†))
5316, 52pm2.61dan 811 1 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948  βŸ¨cop 4634  β€˜cfv 6543  (class class class)co 7408  1c1 11110  2c2 12266   sSet csts 17095  ndxcnx 17125  Basecbs 17143   β†Ύs cress 17172  +gcplusg 17196  .rcmulr 17197  mulGrpcmgp 19986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-mgp 19987
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator