Proof of Theorem mgpressOLD
Step | Hyp | Ref
| Expression |
1 | | mgpress.2 |
. . 3
⊢ 𝑀 = (mulGrp‘𝑅) |
2 | | simpr 485 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (Base‘𝑅) ⊆ 𝐴) |
3 | 1 | fvexi 6788 |
. . . . 5
⊢ 𝑀 ∈ V |
4 | 3 | a1i 11 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V) |
5 | | simplr 766 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝐴 ∈ 𝑊) |
6 | | eqid 2738 |
. . . . 5
⊢ (𝑀 ↾s 𝐴) = (𝑀 ↾s 𝐴) |
7 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
8 | 1, 7 | mgpbas 19726 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑀) |
9 | 6, 8 | ressid2 16945 |
. . . 4
⊢
(((Base‘𝑅)
⊆ 𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = 𝑀) |
10 | 2, 4, 5, 9 | syl3anc 1370 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = 𝑀) |
11 | | simpll 764 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑅 ∈ 𝑉) |
12 | | mgpress.1 |
. . . . . 6
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
13 | 12, 7 | ressid2 16945 |
. . . . 5
⊢
(((Base‘𝑅)
⊆ 𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑆 = 𝑅) |
14 | 2, 11, 5, 13 | syl3anc 1370 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = 𝑅) |
15 | 14 | fveq2d 6778 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = (mulGrp‘𝑅)) |
16 | 1, 10, 15 | 3eqtr4a 2804 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) |
17 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
18 | 1, 17 | mgpval 19723 |
. . . 4
⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) |
19 | 18 | oveq1i 7285 |
. . 3
⊢ (𝑀 sSet 〈(Base‘ndx),
(𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) |
20 | | simpr 485 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ¬ (Base‘𝑅) ⊆ 𝐴) |
21 | 3 | a1i 11 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑀 ∈ V) |
22 | | simplr 766 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝐴 ∈ 𝑊) |
23 | 6, 8 | ressval2 16946 |
. . . 4
⊢ ((¬
(Base‘𝑅) ⊆
𝐴 ∧ 𝑀 ∈ V ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = (𝑀 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
24 | 20, 21, 22, 23 | syl3anc 1370 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = (𝑀 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
25 | | eqid 2738 |
. . . . . 6
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
26 | | eqid 2738 |
. . . . . 6
⊢
(.r‘𝑆) = (.r‘𝑆) |
27 | 25, 26 | mgpval 19723 |
. . . . 5
⊢
(mulGrp‘𝑆) =
(𝑆 sSet
〈(+g‘ndx), (.r‘𝑆)〉) |
28 | | simpll 764 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑅 ∈ 𝑉) |
29 | 12, 7 | ressval2 16946 |
. . . . . . 7
⊢ ((¬
(Base‘𝑅) ⊆
𝐴 ∧ 𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → 𝑆 = (𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
30 | 20, 28, 22, 29 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 𝑆 = (𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
31 | 12, 17 | ressmulr 17017 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑊 → (.r‘𝑅) = (.r‘𝑆)) |
32 | 31 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑊 → (.r‘𝑆) = (.r‘𝑅)) |
33 | 32 | ad2antlr 724 |
. . . . . . 7
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (.r‘𝑆) = (.r‘𝑅)) |
34 | 33 | opeq2d 4811 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → 〈(+g‘ndx),
(.r‘𝑆)〉 = 〈(+g‘ndx),
(.r‘𝑅)〉) |
35 | 30, 34 | oveq12d 7293 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑆 sSet 〈(+g‘ndx),
(.r‘𝑆)〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
36 | 27, 35 | eqtrid 2790 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
37 | | 1ne2 12181 |
. . . . . . 7
⊢ 1 ≠
2 |
38 | 37 | necomi 2998 |
. . . . . 6
⊢ 2 ≠
1 |
39 | | plusgndx 16988 |
. . . . . . 7
⊢
(+g‘ndx) = 2 |
40 | | basendx 16921 |
. . . . . . 7
⊢
(Base‘ndx) = 1 |
41 | 39, 40 | neeq12i 3010 |
. . . . . 6
⊢
((+g‘ndx) ≠ (Base‘ndx) ↔ 2 ≠
1) |
42 | 38, 41 | mpbir 230 |
. . . . 5
⊢
(+g‘ndx) ≠ (Base‘ndx) |
43 | | fvex 6787 |
. . . . . 6
⊢
(.r‘𝑅) ∈ V |
44 | | fvex 6787 |
. . . . . . 7
⊢
(Base‘𝑅)
∈ V |
45 | 44 | inex2 5242 |
. . . . . 6
⊢ (𝐴 ∩ (Base‘𝑅)) ∈ V |
46 | | fvex 6787 |
. . . . . . 7
⊢
(+g‘ndx) ∈ V |
47 | | fvex 6787 |
. . . . . . 7
⊢
(Base‘ndx) ∈ V |
48 | 46, 47 | setscom 16881 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ (+g‘ndx) ≠
(Base‘ndx)) ∧ ((.r‘𝑅) ∈ V ∧ (𝐴 ∩ (Base‘𝑅)) ∈ V)) → ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
49 | 43, 45, 48 | mpanr12 702 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (+g‘ndx) ≠
(Base‘ndx)) → ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
50 | 28, 42, 49 | sylancl 586 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) = ((𝑅 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉) sSet
〈(+g‘ndx), (.r‘𝑅)〉)) |
51 | 36, 50 | eqtr4d 2781 |
. . 3
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (mulGrp‘𝑆) = ((𝑅 sSet 〈(+g‘ndx),
(.r‘𝑅)〉) sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑅))〉)) |
52 | 19, 24, 51 | 3eqtr4a 2804 |
. 2
⊢ (((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) ∧ ¬ (Base‘𝑅) ⊆ 𝐴) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) |
53 | 16, 52 | pm2.61dan 810 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑀 ↾s 𝐴) = (mulGrp‘𝑆)) |