Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusg | ⊢ · = (+g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
2 | 1 | fvexi 6673 | . . . 4 ⊢ · ∈ V |
3 | plusgid 16655 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
4 | 3 | setsid 16597 | . . . 4 ⊢ ((𝑅 ∈ V ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
5 | 2, 4 | mpan2 691 | . . 3 ⊢ (𝑅 ∈ V → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
6 | mgpval.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
7 | 6, 1 | mgpval 19311 | . . . 4 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
8 | 7 | fveq2i 6662 | . . 3 ⊢ (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉)) |
9 | 5, 8 | eqtr4di 2812 | . 2 ⊢ (𝑅 ∈ V → · = (+g‘𝑀)) |
10 | 3 | str0 16594 | . . 3 ⊢ ∅ = (+g‘∅) |
11 | fvprc 6651 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
12 | 1, 11 | syl5eq 2806 | . . 3 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
13 | fvprc 6651 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
14 | 6, 13 | syl5eq 2806 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑀 = ∅) |
15 | 14 | fveq2d 6663 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑀) = (+g‘∅)) |
16 | 10, 12, 15 | 3eqtr4a 2820 | . 2 ⊢ (¬ 𝑅 ∈ V → · = (+g‘𝑀)) |
17 | 9, 16 | pm2.61i 185 | 1 ⊢ · = (+g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4226 〈cop 4529 ‘cfv 6336 (class class class)co 7151 ndxcnx 16539 sSet csts 16540 +gcplusg 16624 .rcmulr 16625 mulGrpcmgp 19308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-1cn 10634 ax-addcl 10636 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-nn 11676 df-2 11738 df-ndx 16545 df-slot 16546 df-sets 16549 df-plusg 16637 df-mgp 19309 |
This theorem is referenced by: dfur2 19323 srgcl 19331 srgass 19332 srgideu 19333 srgidmlem 19339 issrgid 19342 srg1zr 19348 srgpcomp 19351 srgpcompp 19352 srgbinomlem4 19362 srgbinomlem 19363 csrgbinom 19365 ringcl 19383 crngcom 19384 iscrng2 19385 ringass 19386 ringideu 19387 ringidmlem 19392 isringid 19395 ringidss 19399 ringpropd 19404 crngpropd 19405 isringd 19407 iscrngd 19408 ring1 19424 gsummgp0 19430 prdsmgp 19432 oppr1 19456 unitgrp 19489 unitlinv 19499 unitrinv 19500 rngidpropd 19517 invrpropd 19520 dfrhm2 19541 rhmmul 19551 isrhm2d 19552 isdrng2 19581 drngmcl 19584 drngid2 19587 isdrngd 19596 subrgugrp 19623 issubrg3 19632 cntzsubr 19637 rhmpropd 19640 cntzsdrg 19650 primefld 19653 rlmscaf 20050 xrsmcmn 20190 cnfldexp 20200 cnmsubglem 20230 expmhm 20236 nn0srg 20237 rge0srg 20238 expghm 20266 psgnghm 20346 psgnco 20349 evpmodpmf1o 20362 sraassa 20633 assamulgscmlem2 20664 psrcrng 20742 mplcoe3 20799 mplcoe5lem 20800 mplcoe5 20801 mplcoe2 20802 mplbas2 20803 evlslem1 20846 mpfind 20871 mhppwdeg 20894 coe1tm 20998 ply1coe 21021 ringvcl 21101 mamuvs2 21107 mat1mhm 21185 scmatmhm 21235 mdetdiaglem 21299 mdetrlin 21303 mdetrsca 21304 mdetralt 21309 mdetunilem7 21319 mdetuni0 21322 m2detleib 21332 invrvald 21377 mat2pmatmhm 21434 pm2mpmhm 21521 chfacfpmmulgsum2 21566 cpmadugsumlemB 21575 cnmpt1mulr 22883 cnmpt2mulr 22884 reefgim 25145 efabl 25242 efsubm 25243 amgm 25676 wilthlem2 25754 wilthlem3 25755 dchrelbas3 25922 dchrzrhmul 25930 dchrmulcl 25933 dchrn0 25934 dchrinvcl 25937 dchrptlem2 25949 dchrsum2 25952 sum2dchr 25958 lgseisenlem3 26061 lgseisenlem4 26062 frobrhm 31012 rdivmuldivd 31015 ringinvval 31016 dvrcan5 31017 rhmunitinv 31048 elringlsm 31103 lsmsnpridl 31108 cringm4 31144 mxidlprm 31162 iistmd 31374 xrge0iifmhm 31411 xrge0pluscn 31412 pl1cn 31427 pwspjmhmmgpd 39775 mhphf 39791 isdomn3 40522 mon1psubm 40524 deg1mhm 40525 amgm2d 41278 amgm3d 41279 amgm4d 41280 isringrng 44873 rngcl 44875 isrnghmmul 44885 lidlmmgm 44917 lidlmsgrp 44918 2zrngmmgm 44938 2zrngmsgrp 44939 2zrngnring 44944 cznrng 44947 cznnring 44948 mgpsumunsn 45131 invginvrid 45137 amgmlemALT 45723 amgmw2d 45724 |
Copyright terms: Public domain | W3C validator |