Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusg | ⊢ · = (+g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
2 | 1 | fvexi 6770 | . . . 4 ⊢ · ∈ V |
3 | plusgid 16915 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
4 | 3 | setsid 16837 | . . . 4 ⊢ ((𝑅 ∈ V ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
5 | 2, 4 | mpan2 687 | . . 3 ⊢ (𝑅 ∈ V → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
6 | mgpval.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
7 | 6, 1 | mgpval 19638 | . . . 4 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
8 | 7 | fveq2i 6759 | . . 3 ⊢ (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉)) |
9 | 5, 8 | eqtr4di 2797 | . 2 ⊢ (𝑅 ∈ V → · = (+g‘𝑀)) |
10 | 3 | str0 16818 | . . 3 ⊢ ∅ = (+g‘∅) |
11 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
12 | 1, 11 | eqtrid 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
13 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
14 | 6, 13 | eqtrid 2790 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑀 = ∅) |
15 | 14 | fveq2d 6760 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑀) = (+g‘∅)) |
16 | 10, 12, 15 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝑅 ∈ V → · = (+g‘𝑀)) |
17 | 9, 16 | pm2.61i 182 | 1 ⊢ · = (+g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 ndxcnx 16822 +gcplusg 16888 .rcmulr 16889 mulGrpcmgp 19635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-plusg 16901 df-mgp 19636 |
This theorem is referenced by: dfur2 19655 srgcl 19663 srgass 19664 srgideu 19665 srgidmlem 19671 issrgid 19674 srg1zr 19680 srgpcomp 19683 srgpcompp 19684 srgbinomlem4 19694 srgbinomlem 19695 csrgbinom 19697 ringcl 19715 crngcom 19716 iscrng2 19717 ringass 19718 ringideu 19719 ringidmlem 19724 isringid 19727 ringidss 19731 ringpropd 19736 crngpropd 19737 isringd 19739 iscrngd 19740 ring1 19756 gsummgp0 19762 prdsmgp 19764 oppr1 19791 unitgrp 19824 unitlinv 19834 unitrinv 19835 rngidpropd 19852 invrpropd 19855 dfrhm2 19876 rhmmul 19886 isrhm2d 19887 isdrng2 19916 drngmcl 19919 drngid2 19922 isdrngd 19931 subrgugrp 19958 issubrg3 19967 cntzsubr 19972 rhmpropd 19975 cntzsdrg 19985 primefld 19988 rlmscaf 20392 xrsmcmn 20533 cnfldexp 20543 cnmsubglem 20573 expmhm 20579 nn0srg 20580 rge0srg 20581 expghm 20609 psgnghm 20697 psgnco 20700 evpmodpmf1o 20713 sraassa 20984 assamulgscmlem2 21014 psrcrng 21092 mplcoe3 21149 mplcoe5lem 21150 mplcoe5 21151 mplcoe2 21152 mplbas2 21153 evlslem1 21202 mpfind 21227 mhppwdeg 21250 coe1tm 21354 ply1coe 21377 ringvcl 21457 mamuvs2 21463 mat1mhm 21541 scmatmhm 21591 mdetdiaglem 21655 mdetrlin 21659 mdetrsca 21660 mdetralt 21665 mdetunilem7 21675 mdetuni0 21678 m2detleib 21688 invrvald 21733 mat2pmatmhm 21790 pm2mpmhm 21877 chfacfpmmulgsum2 21922 cpmadugsumlemB 21931 cnmpt1mulr 23241 cnmpt2mulr 23242 reefgim 25514 efabl 25611 efsubm 25612 amgm 26045 wilthlem2 26123 wilthlem3 26124 dchrelbas3 26291 dchrzrhmul 26299 dchrmulcl 26302 dchrn0 26303 dchrinvcl 26306 dchrptlem2 26318 dchrsum2 26321 sum2dchr 26327 lgseisenlem3 26430 lgseisenlem4 26431 frobrhm 31387 rdivmuldivd 31390 ringinvval 31391 dvrcan5 31392 rhmunitinv 31423 elringlsm 31483 lsmsnpridl 31488 cringm4 31524 mxidlprm 31542 iistmd 31754 xrge0iifmhm 31791 xrge0pluscn 31792 pl1cn 31807 pwspjmhmmgpd 40192 mhphf 40208 isdomn3 40945 mon1psubm 40947 deg1mhm 40948 amgm2d 41698 amgm3d 41699 amgm4d 41700 isringrng 45327 rngcl 45329 isrnghmmul 45339 lidlmmgm 45371 lidlmsgrp 45372 2zrngmmgm 45392 2zrngmsgrp 45393 2zrngnring 45398 cznrng 45401 cznnring 45402 mgpsumunsn 45585 invginvrid 45591 amgmlemALT 46393 amgmw2d 46394 |
Copyright terms: Public domain | W3C validator |