Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusg | ⊢ · = (+g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
2 | 1 | fvexi 6797 | . . . 4 ⊢ · ∈ V |
3 | plusgid 16998 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
4 | 3 | setsid 16918 | . . . 4 ⊢ ((𝑅 ∈ V ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
5 | 2, 4 | mpan2 688 | . . 3 ⊢ (𝑅 ∈ V → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
6 | mgpval.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
7 | 6, 1 | mgpval 19732 | . . . 4 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
8 | 7 | fveq2i 6786 | . . 3 ⊢ (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉)) |
9 | 5, 8 | eqtr4di 2797 | . 2 ⊢ (𝑅 ∈ V → · = (+g‘𝑀)) |
10 | 3 | str0 16899 | . . 3 ⊢ ∅ = (+g‘∅) |
11 | fvprc 6775 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
12 | 1, 11 | eqtrid 2791 | . . 3 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
13 | fvprc 6775 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
14 | 6, 13 | eqtrid 2791 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑀 = ∅) |
15 | 14 | fveq2d 6787 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑀) = (+g‘∅)) |
16 | 10, 12, 15 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝑅 ∈ V → · = (+g‘𝑀)) |
17 | 9, 16 | pm2.61i 182 | 1 ⊢ · = (+g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ∅c0 4257 〈cop 4568 ‘cfv 6437 (class class class)co 7284 sSet csts 16873 ndxcnx 16903 +gcplusg 16971 .rcmulr 16972 mulGrpcmgp 19729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-1cn 10938 ax-addcl 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-nn 11983 df-2 12045 df-sets 16874 df-slot 16892 df-ndx 16904 df-plusg 16984 df-mgp 19730 |
This theorem is referenced by: dfur2 19749 srgcl 19757 srgass 19758 srgideu 19759 srgidmlem 19765 issrgid 19768 srg1zr 19774 srgpcomp 19777 srgpcompp 19778 srgbinomlem4 19788 srgbinomlem 19789 csrgbinom 19791 ringcl 19809 crngcom 19810 iscrng2 19811 ringass 19812 ringideu 19813 ringidmlem 19818 isringid 19821 ringidss 19825 ringpropd 19830 crngpropd 19831 isringd 19833 iscrngd 19834 ring1 19850 gsummgp0 19856 prdsmgp 19858 oppr1 19885 unitgrp 19918 unitlinv 19928 unitrinv 19929 rngidpropd 19946 invrpropd 19949 dfrhm2 19970 rhmmul 19980 isrhm2d 19981 isdrng2 20010 drngmcl 20013 drngid2 20016 isdrngd 20025 subrgugrp 20052 issubrg3 20061 cntzsubr 20066 rhmpropd 20069 cntzsdrg 20079 primefld 20082 rlmscaf 20488 xrsmcmn 20630 cnfldexp 20640 cnmsubglem 20670 expmhm 20676 nn0srg 20677 rge0srg 20678 expghm 20706 psgnghm 20794 psgnco 20797 evpmodpmf1o 20810 sraassa 21083 assamulgscmlem2 21113 psrcrng 21191 mplcoe3 21248 mplcoe5lem 21249 mplcoe5 21250 mplcoe2 21251 mplbas2 21252 evlslem1 21301 mpfind 21326 mhppwdeg 21349 coe1tm 21453 ply1coe 21476 ringvcl 21556 mamuvs2 21562 mat1mhm 21642 scmatmhm 21692 mdetdiaglem 21756 mdetrlin 21760 mdetrsca 21761 mdetralt 21766 mdetunilem7 21776 mdetuni0 21779 m2detleib 21789 invrvald 21834 mat2pmatmhm 21891 pm2mpmhm 21978 chfacfpmmulgsum2 22023 cpmadugsumlemB 22032 cnmpt1mulr 23342 cnmpt2mulr 23343 reefgim 25618 efabl 25715 efsubm 25716 amgm 26149 wilthlem2 26227 wilthlem3 26228 dchrelbas3 26395 dchrzrhmul 26403 dchrmulcl 26406 dchrn0 26407 dchrinvcl 26410 dchrptlem2 26422 dchrsum2 26425 sum2dchr 26431 lgseisenlem3 26534 lgseisenlem4 26535 frobrhm 31494 rdivmuldivd 31497 ringinvval 31498 dvrcan5 31499 rhmunitinv 31530 elringlsm 31590 lsmsnpridl 31595 cringm4 31631 mxidlprm 31649 iistmd 31861 xrge0iifmhm 31898 xrge0pluscn 31899 pl1cn 31914 pwspjmhmmgpd 40274 mhphf 40292 isdomn3 41036 mon1psubm 41038 deg1mhm 41039 amgm2d 41816 amgm3d 41817 amgm4d 41818 isringrng 45450 rngcl 45452 isrnghmmul 45462 lidlmmgm 45494 lidlmsgrp 45495 2zrngmmgm 45515 2zrngmsgrp 45516 2zrngnring 45521 cznrng 45524 cznnring 45525 mgpsumunsn 45708 invginvrid 45714 amgmlemALT 46518 amgmw2d 46519 |
Copyright terms: Public domain | W3C validator |