![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | β’ π = (mulGrpβπ ) |
mgpval.2 | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
mgpplusg | β’ Β· = (+gβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 β’ Β· = (.rβπ ) | |
2 | 1 | fvexi 6904 | . . . 4 β’ Β· β V |
3 | plusgid 17228 | . . . . 5 β’ +g = Slot (+gβndx) | |
4 | 3 | setsid 17145 | . . . 4 β’ ((π β V β§ Β· β V) β Β· = (+gβ(π sSet β¨(+gβndx), Β· β©))) |
5 | 2, 4 | mpan2 687 | . . 3 β’ (π β V β Β· = (+gβ(π sSet β¨(+gβndx), Β· β©))) |
6 | mgpval.1 | . . . . 5 β’ π = (mulGrpβπ ) | |
7 | 6, 1 | mgpval 20031 | . . . 4 β’ π = (π sSet β¨(+gβndx), Β· β©) |
8 | 7 | fveq2i 6893 | . . 3 β’ (+gβπ) = (+gβ(π sSet β¨(+gβndx), Β· β©)) |
9 | 5, 8 | eqtr4di 2788 | . 2 β’ (π β V β Β· = (+gβπ)) |
10 | 3 | str0 17126 | . . 3 β’ β = (+gββ ) |
11 | fvprc 6882 | . . . 4 β’ (Β¬ π β V β (.rβπ ) = β ) | |
12 | 1, 11 | eqtrid 2782 | . . 3 β’ (Β¬ π β V β Β· = β ) |
13 | fvprc 6882 | . . . . 5 β’ (Β¬ π β V β (mulGrpβπ ) = β ) | |
14 | 6, 13 | eqtrid 2782 | . . . 4 β’ (Β¬ π β V β π = β ) |
15 | 14 | fveq2d 6894 | . . 3 β’ (Β¬ π β V β (+gβπ) = (+gββ )) |
16 | 10, 12, 15 | 3eqtr4a 2796 | . 2 β’ (Β¬ π β V β Β· = (+gβπ)) |
17 | 9, 16 | pm2.61i 182 | 1 β’ Β· = (+gβπ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1539 β wcel 2104 Vcvv 3472 β c0 4321 β¨cop 4633 βcfv 6542 (class class class)co 7411 sSet csts 17100 ndxcnx 17130 +gcplusg 17201 .rcmulr 17202 mulGrpcmgp 20028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-plusg 17214 df-mgp 20029 |
This theorem is referenced by: prdsmgp 20045 rngass 20053 rngcl 20058 isrngd 20067 rngpropd 20068 dfur2 20078 srgcl 20087 srgass 20088 srgideu 20089 srgidmlem 20095 issrgid 20098 srg1zr 20109 srgpcomp 20112 srgpcompp 20113 srgbinomlem4 20123 srgbinomlem 20124 csrgbinom 20126 ringcl 20144 crngcom 20145 iscrng2 20146 ringass 20147 ringideu 20148 ringidmlem 20156 isringid 20159 ringidss 20165 isringrng 20175 ringpropd 20176 crngpropd 20177 isringd 20179 iscrngd 20180 ring1 20198 gsummgp0 20206 pwspjmhmmgpd 20216 xpsring1d 20221 oppr1 20241 unitgrp 20274 unitlinv 20284 unitrinv 20285 rdivmuldivd 20304 rngidpropd 20306 invrpropd 20309 isrnghmmul 20333 dfrhm2 20365 rhmmul 20377 isrhm2d 20378 rhmunitinv 20402 rhmimasubrnglem 20453 rhmimasubrng 20454 cntzsubrng 20455 subrgugrp 20481 issubrg3 20490 cntzsubr 20496 rhmpropd 20499 isdrng2 20514 drngmcl 20517 drngid2 20521 isdrngd 20533 isdrngdOLD 20535 cntzsdrg 20561 primefld 20564 rlmscaf 20976 rnglidlmmgm 21034 rnglidlmsgrp 21035 rng2idl1cntr 21064 xrsmcmn 21168 cnfldexp 21178 cnmsubglem 21208 expmhm 21214 nn0srg 21215 rge0srg 21216 expghm 21246 psgnghm 21352 psgnco 21355 evpmodpmf1o 21368 sraassab 21641 sraassaOLD 21643 assamulgscmlem2 21673 psrcrng 21752 mplcoe3 21812 mplcoe5lem 21813 mplcoe5 21814 mplcoe2 21815 mplbas2 21816 evlslem1 21864 mpfind 21889 mhppwdeg 21912 coe1tm 22015 ply1coe 22040 ringvcl 22120 mamuvs2 22126 mat1mhm 22206 scmatmhm 22256 mdetdiaglem 22320 mdetrlin 22324 mdetrsca 22325 mdetralt 22330 mdetunilem7 22340 mdetuni0 22343 m2detleib 22353 invrvald 22398 mat2pmatmhm 22455 pm2mpmhm 22542 chfacfpmmulgsum2 22587 cpmadugsumlemB 22596 cnmpt1mulr 23906 cnmpt2mulr 23907 reefgim 26198 efabl 26295 efsubm 26296 amgm 26731 wilthlem2 26809 wilthlem3 26810 dchrelbas3 26977 dchrzrhmul 26985 dchrmulcl 26988 dchrn0 26989 dchrinvcl 26992 dchrptlem2 27004 dchrsum2 27007 sum2dchr 27013 lgseisenlem3 27116 lgseisenlem4 27117 urpropd 32648 frobrhm 32652 ringinvval 32654 dvrcan5 32655 elringlsm 32777 lsmsnpridl 32782 cringm4 32839 mxidlprm 32860 evls1fldgencl 33033 iistmd 33180 xrge0iifmhm 33217 xrge0pluscn 33218 pl1cn 33233 selvvvval 41459 evlselv 41461 mhphf 41471 isdomn3 42248 mon1psubm 42250 deg1mhm 42251 amgm2d 43252 amgm3d 43253 amgm4d 43254 2zrngmmgm 46932 2zrngmsgrp 46933 2zrngnring 46938 cznrng 46941 cznnring 46942 mgpsumunsn 47125 invginvrid 47131 amgmlemALT 47937 amgmw2d 47938 |
Copyright terms: Public domain | W3C validator |