![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpval.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
mgpplusg | ⊢ · = (+g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
2 | 1 | fvexi 6856 | . . . 4 ⊢ · ∈ V |
3 | plusgid 17160 | . . . . 5 ⊢ +g = Slot (+g‘ndx) | |
4 | 3 | setsid 17080 | . . . 4 ⊢ ((𝑅 ∈ V ∧ · ∈ V) → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
5 | 2, 4 | mpan2 689 | . . 3 ⊢ (𝑅 ∈ V → · = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉))) |
6 | mgpval.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
7 | 6, 1 | mgpval 19899 | . . . 4 ⊢ 𝑀 = (𝑅 sSet 〈(+g‘ndx), · 〉) |
8 | 7 | fveq2i 6845 | . . 3 ⊢ (+g‘𝑀) = (+g‘(𝑅 sSet 〈(+g‘ndx), · 〉)) |
9 | 5, 8 | eqtr4di 2794 | . 2 ⊢ (𝑅 ∈ V → · = (+g‘𝑀)) |
10 | 3 | str0 17061 | . . 3 ⊢ ∅ = (+g‘∅) |
11 | fvprc 6834 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
12 | 1, 11 | eqtrid 2788 | . . 3 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
13 | fvprc 6834 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
14 | 6, 13 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝑅 ∈ V → 𝑀 = ∅) |
15 | 14 | fveq2d 6846 | . . 3 ⊢ (¬ 𝑅 ∈ V → (+g‘𝑀) = (+g‘∅)) |
16 | 10, 12, 15 | 3eqtr4a 2802 | . 2 ⊢ (¬ 𝑅 ∈ V → · = (+g‘𝑀)) |
17 | 9, 16 | pm2.61i 182 | 1 ⊢ · = (+g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∅c0 4282 〈cop 4592 ‘cfv 6496 (class class class)co 7357 sSet csts 17035 ndxcnx 17065 +gcplusg 17133 .rcmulr 17134 mulGrpcmgp 19896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-1cn 11109 ax-addcl 11111 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-plusg 17146 df-mgp 19897 |
This theorem is referenced by: dfur2 19916 srgcl 19924 srgass 19925 srgideu 19926 srgidmlem 19932 issrgid 19935 srg1zr 19946 srgpcomp 19949 srgpcompp 19950 srgbinomlem4 19960 srgbinomlem 19961 csrgbinom 19963 ringcl 19981 crngcom 19982 iscrng2 19983 ringass 19984 ringideu 19985 ringidmlem 19991 isringid 19994 ringidss 19998 ringpropd 20006 crngpropd 20007 isringd 20009 iscrngd 20010 ring1 20026 gsummgp0 20032 prdsmgp 20034 pwspjmhmmgpd 20043 oppr1 20063 unitgrp 20096 unitlinv 20106 unitrinv 20107 rngidpropd 20124 invrpropd 20127 dfrhm2 20148 rhmmul 20159 isrhm2d 20160 rhmunitinv 20184 isdrng2 20198 drngmcl 20201 drngid2 20204 isdrngd 20214 subrgugrp 20241 issubrg3 20250 cntzsubr 20255 rhmpropd 20258 cntzsdrg 20269 primefld 20272 rlmscaf 20678 xrsmcmn 20820 cnfldexp 20830 cnmsubglem 20860 expmhm 20866 nn0srg 20867 rge0srg 20868 expghm 20896 psgnghm 20984 psgnco 20987 evpmodpmf1o 21000 sraassa 21273 assamulgscmlem2 21303 psrcrng 21382 mplcoe3 21439 mplcoe5lem 21440 mplcoe5 21441 mplcoe2 21442 mplbas2 21443 evlslem1 21492 mpfind 21517 mhppwdeg 21540 coe1tm 21644 ply1coe 21667 ringvcl 21747 mamuvs2 21753 mat1mhm 21833 scmatmhm 21883 mdetdiaglem 21947 mdetrlin 21951 mdetrsca 21952 mdetralt 21957 mdetunilem7 21967 mdetuni0 21970 m2detleib 21980 invrvald 22025 mat2pmatmhm 22082 pm2mpmhm 22169 chfacfpmmulgsum2 22214 cpmadugsumlemB 22223 cnmpt1mulr 23533 cnmpt2mulr 23534 reefgim 25809 efabl 25906 efsubm 25907 amgm 26340 wilthlem2 26418 wilthlem3 26419 dchrelbas3 26586 dchrzrhmul 26594 dchrmulcl 26597 dchrn0 26598 dchrinvcl 26601 dchrptlem2 26613 dchrsum2 26616 sum2dchr 26622 lgseisenlem3 26725 lgseisenlem4 26726 frobrhm 32068 rdivmuldivd 32071 ringinvval 32072 dvrcan5 32073 elringlsm 32174 lsmsnpridl 32179 cringm4 32219 mxidlprm 32237 iistmd 32483 xrge0iifmhm 32520 xrge0pluscn 32521 pl1cn 32536 mhphf 40757 isdomn3 41517 mon1psubm 41519 deg1mhm 41520 amgm2d 42461 amgm3d 42462 amgm4d 42463 isringrng 46169 rngcl 46171 isrnghmmul 46181 lidlmmgm 46213 lidlmsgrp 46214 2zrngmmgm 46234 2zrngmsgrp 46235 2zrngnring 46240 cznrng 46243 cznnring 46244 mgpsumunsn 46427 invginvrid 46433 amgmlemALT 47240 amgmw2d 47241 |
Copyright terms: Public domain | W3C validator |