![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mgpplusg | Structured version Visualization version GIF version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | β’ π = (mulGrpβπ ) |
mgpval.2 | β’ Β· = (.rβπ ) |
Ref | Expression |
---|---|
mgpplusg | β’ Β· = (+gβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . . 5 β’ Β· = (.rβπ ) | |
2 | 1 | fvexi 6905 | . . . 4 β’ Β· β V |
3 | plusgid 17223 | . . . . 5 β’ +g = Slot (+gβndx) | |
4 | 3 | setsid 17140 | . . . 4 β’ ((π β V β§ Β· β V) β Β· = (+gβ(π sSet β¨(+gβndx), Β· β©))) |
5 | 2, 4 | mpan2 689 | . . 3 β’ (π β V β Β· = (+gβ(π sSet β¨(+gβndx), Β· β©))) |
6 | mgpval.1 | . . . . 5 β’ π = (mulGrpβπ ) | |
7 | 6, 1 | mgpval 19989 | . . . 4 β’ π = (π sSet β¨(+gβndx), Β· β©) |
8 | 7 | fveq2i 6894 | . . 3 β’ (+gβπ) = (+gβ(π sSet β¨(+gβndx), Β· β©)) |
9 | 5, 8 | eqtr4di 2790 | . 2 β’ (π β V β Β· = (+gβπ)) |
10 | 3 | str0 17121 | . . 3 β’ β = (+gββ ) |
11 | fvprc 6883 | . . . 4 β’ (Β¬ π β V β (.rβπ ) = β ) | |
12 | 1, 11 | eqtrid 2784 | . . 3 β’ (Β¬ π β V β Β· = β ) |
13 | fvprc 6883 | . . . . 5 β’ (Β¬ π β V β (mulGrpβπ ) = β ) | |
14 | 6, 13 | eqtrid 2784 | . . . 4 β’ (Β¬ π β V β π = β ) |
15 | 14 | fveq2d 6895 | . . 3 β’ (Β¬ π β V β (+gβπ) = (+gββ )) |
16 | 10, 12, 15 | 3eqtr4a 2798 | . 2 β’ (Β¬ π β V β Β· = (+gβπ)) |
17 | 9, 16 | pm2.61i 182 | 1 β’ Β· = (+gβπ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 β¨cop 4634 βcfv 6543 (class class class)co 7408 sSet csts 17095 ndxcnx 17125 +gcplusg 17196 .rcmulr 17197 mulGrpcmgp 19986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-2 12274 df-sets 17096 df-slot 17114 df-ndx 17126 df-plusg 17209 df-mgp 19987 |
This theorem is referenced by: dfur2 20006 srgcl 20015 srgass 20016 srgideu 20017 srgidmlem 20023 issrgid 20026 srg1zr 20037 srgpcomp 20040 srgpcompp 20041 srgbinomlem4 20051 srgbinomlem 20052 csrgbinom 20054 ringcl 20072 crngcom 20073 iscrng2 20074 ringass 20075 ringideu 20076 ringidmlem 20084 isringid 20087 ringidss 20093 ringpropd 20101 crngpropd 20102 isringd 20104 iscrngd 20105 ring1 20121 gsummgp0 20129 prdsmgp 20131 pwspjmhmmgpd 20140 xpsring1d 20145 oppr1 20163 unitgrp 20196 unitlinv 20206 unitrinv 20207 rdivmuldivd 20226 rngidpropd 20228 invrpropd 20231 dfrhm2 20252 rhmmul 20263 isrhm2d 20264 rhmunitinv 20289 subrgugrp 20337 issubrg3 20346 cntzsubr 20352 rhmpropd 20355 isdrng2 20370 drngmcl 20373 drngid2 20377 isdrngd 20389 isdrngdOLD 20391 cntzsdrg 20417 primefld 20420 rlmscaf 20830 xrsmcmn 20967 cnfldexp 20977 cnmsubglem 21007 expmhm 21013 nn0srg 21014 rge0srg 21015 expghm 21044 psgnghm 21132 psgnco 21135 evpmodpmf1o 21148 sraassab 21421 sraassaOLD 21423 assamulgscmlem2 21453 psrcrng 21532 mplcoe3 21592 mplcoe5lem 21593 mplcoe5 21594 mplcoe2 21595 mplbas2 21596 evlslem1 21644 mpfind 21669 mhppwdeg 21692 coe1tm 21794 ply1coe 21819 ringvcl 21899 mamuvs2 21905 mat1mhm 21985 scmatmhm 22035 mdetdiaglem 22099 mdetrlin 22103 mdetrsca 22104 mdetralt 22109 mdetunilem7 22119 mdetuni0 22122 m2detleib 22132 invrvald 22177 mat2pmatmhm 22234 pm2mpmhm 22321 chfacfpmmulgsum2 22366 cpmadugsumlemB 22375 cnmpt1mulr 23685 cnmpt2mulr 23686 reefgim 25961 efabl 26058 efsubm 26059 amgm 26492 wilthlem2 26570 wilthlem3 26571 dchrelbas3 26738 dchrzrhmul 26746 dchrmulcl 26749 dchrn0 26750 dchrinvcl 26753 dchrptlem2 26765 dchrsum2 26768 sum2dchr 26774 lgseisenlem3 26877 lgseisenlem4 26878 urpropd 32373 frobrhm 32377 ringinvval 32379 dvrcan5 32380 elringlsm 32498 lsmsnpridl 32503 cringm4 32560 mxidlprm 32581 iistmd 32877 xrge0iifmhm 32914 xrge0pluscn 32915 pl1cn 32930 selvvvval 41159 evlselv 41161 mhphf 41171 isdomn3 41936 mon1psubm 41938 deg1mhm 41939 amgm2d 42940 amgm3d 42941 amgm4d 42942 isringrng 46647 rngass 46648 rngcl 46653 isrngd 46662 rngpropd 46663 isrnghmmul 46681 rhmimasubrnglem 46734 rhmimasubrng 46735 cntzsubrng 46736 rnglidlmmgm 46746 rnglidlmsgrp 46747 rng2idl1cntr 46780 2zrngmmgm 46834 2zrngmsgrp 46835 2zrngnring 46840 cznrng 46843 cznnring 46844 mgpsumunsn 47027 invginvrid 47033 amgmlemALT 47840 amgmw2d 47841 |
Copyright terms: Public domain | W3C validator |