| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omoALT | Structured version Visualization version GIF version | ||
| Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 48854 without assuming ax-un 7691. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| f1omoALT.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
| Ref | Expression |
|---|---|
| f1omoALT | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1omoALT.1 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
| 2 | 1 | fveq1d 6842 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
| 3 | 1oex 8421 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 3 | fvconstdomi 48853 | . . 3 ⊢ ((𝐴 × {1o})‘𝑋) ≼ 1o |
| 5 | 2, 4 | eqbrtrdi 5141 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≼ 1o) |
| 6 | modom2 9168 | . 2 ⊢ (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ (𝐹‘𝑋) ≼ 1o) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 {csn 4585 class class class wbr 5102 × cxp 5629 ‘cfv 6499 1oc1o 8404 ≼ cdom 8893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1o 8411 df-en 8896 df-dom 8897 df-sdom 8898 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |