Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omoALT Structured version   Visualization version   GIF version

Theorem f1omoALT 48883
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 48881 without assuming ax-un 7675. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
f1omoALT.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omoALT (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐹   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem f1omoALT
StepHypRef Expression
1 f1omoALT.1 . . . 4 (𝜑𝐹 = (𝐴 × {1o}))
21fveq1d 6828 . . 3 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
3 1oex 8405 . . . 4 1o ∈ V
43fvconstdomi 48880 . . 3 ((𝐴 × {1o})‘𝑋) ≼ 1o
52, 4eqbrtrdi 5134 . 2 (𝜑 → (𝐹𝑋) ≼ 1o)
6 modom2 9151 . 2 (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ (𝐹𝑋) ≼ 1o)
75, 6sylibr 234 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ∃*wmo 2531  {csn 4579   class class class wbr 5095   × cxp 5621  cfv 6486  1oc1o 8388  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1o 8395  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator