![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omoALT | Structured version Visualization version GIF version |
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 47527 without assuming ax-un 7725. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
f1omoALT.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
Ref | Expression |
---|---|
f1omoALT | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1omoALT.1 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
2 | 1 | fveq1d 6894 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
3 | 1oex 8476 | . . . 4 ⊢ 1o ∈ V | |
4 | 3 | fvconstdomi 47526 | . . 3 ⊢ ((𝐴 × {1o})‘𝑋) ≼ 1o |
5 | 2, 4 | eqbrtrdi 5188 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≼ 1o) |
6 | modom2 9245 | . 2 ⊢ (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ (𝐹‘𝑋) ≼ 1o) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∃*wmo 2533 {csn 4629 class class class wbr 5149 × cxp 5675 ‘cfv 6544 1oc1o 8459 ≼ cdom 8937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1o 8466 df-en 8940 df-dom 8941 df-sdom 8942 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |