Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omoALT Structured version   Visualization version   GIF version

Theorem f1omoALT 47528
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 47527 without assuming ax-un 7725. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
f1omoALT.1 (𝜑𝐹 = (𝐴 × {1o}))
Assertion
Ref Expression
f1omoALT (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Distinct variable groups:   𝑦,𝐹   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem f1omoALT
StepHypRef Expression
1 f1omoALT.1 . . . 4 (𝜑𝐹 = (𝐴 × {1o}))
21fveq1d 6894 . . 3 (𝜑 → (𝐹𝑋) = ((𝐴 × {1o})‘𝑋))
3 1oex 8476 . . . 4 1o ∈ V
43fvconstdomi 47526 . . 3 ((𝐴 × {1o})‘𝑋) ≼ 1o
52, 4eqbrtrdi 5188 . 2 (𝜑 → (𝐹𝑋) ≼ 1o)
6 modom2 9245 . 2 (∃*𝑦 𝑦 ∈ (𝐹𝑋) ↔ (𝐹𝑋) ≼ 1o)
75, 6sylibr 233 1 (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  ∃*wmo 2533  {csn 4629   class class class wbr 5149   × cxp 5675  cfv 6544  1oc1o 8459  cdom 8937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1o 8466  df-en 8940  df-dom 8941  df-sdom 8942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator