![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omoALT | Structured version Visualization version GIF version |
Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 48574 without assuming ax-un 7770. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
f1omoALT.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
Ref | Expression |
---|---|
f1omoALT | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1omoALT.1 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
2 | 1 | fveq1d 6922 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
3 | 1oex 8532 | . . . 4 ⊢ 1o ∈ V | |
4 | 3 | fvconstdomi 48573 | . . 3 ⊢ ((𝐴 × {1o})‘𝑋) ≼ 1o |
5 | 2, 4 | eqbrtrdi 5205 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≼ 1o) |
6 | modom2 9308 | . 2 ⊢ (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ (𝐹‘𝑋) ≼ 1o) | |
7 | 5, 6 | sylibr 234 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 {csn 4648 class class class wbr 5166 × cxp 5698 ‘cfv 6573 1oc1o 8515 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |