| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > f1omoALT | Structured version Visualization version GIF version | ||
| Description: There is at most one element in the function value of a constant function whose output is 1o. (An artifact of our function value definition.) Use f1omo 48924 without assuming ax-un 7663. (Contributed by Zhi Wang, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| f1omoALT.1 | ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) |
| Ref | Expression |
|---|---|
| f1omoALT | ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1omoALT.1 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝐴 × {1o})) | |
| 2 | 1 | fveq1d 6819 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) = ((𝐴 × {1o})‘𝑋)) |
| 3 | 1oex 8390 | . . . 4 ⊢ 1o ∈ V | |
| 4 | 3 | fvconstdomi 48923 | . . 3 ⊢ ((𝐴 × {1o})‘𝑋) ≼ 1o |
| 5 | 2, 4 | eqbrtrdi 5125 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≼ 1o) |
| 6 | modom2 9131 | . 2 ⊢ (∃*𝑦 𝑦 ∈ (𝐹‘𝑋) ↔ (𝐹‘𝑋) ≼ 1o) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ (𝜑 → ∃*𝑦 𝑦 ∈ (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 {csn 4571 class class class wbr 5086 × cxp 5609 ‘cfv 6476 1oc1o 8373 ≼ cdom 8862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-1o 8380 df-en 8865 df-dom 8866 df-sdom 8867 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |