| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptexw | Structured version Visualization version GIF version | ||
| Description: Weak version of mptex 7220 that holds without ax-rep 5254. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mptexw.1 | ⊢ 𝐴 ∈ V |
| mptexw.2 | ⊢ 𝐶 ∈ V |
| mptexw.3 | ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| mptexw | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6579 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | mptexw.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | dmmptss 6235 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 5 | 2, 4 | ssexi 5297 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 6 | mptexw.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | mptexw.3 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
| 8 | 3 | rnmptss 7118 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶) |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶 |
| 10 | 6, 9 | ssexi 5297 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 11 | funexw 7955 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 12 | 1, 5, 10, 11 | mp3an 1463 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 ↦ cmpt 5206 dom cdm 5659 ran crn 5660 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: grpinvfval 18966 odfval 19518 |
| Copyright terms: Public domain | W3C validator |