MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptexw Structured version   Visualization version   GIF version

Theorem mptexw 7795
Description: Weak version of mptex 7099 that holds without ax-rep 5209. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1 𝐴 ∈ V
mptexw.2 𝐶 ∈ V
mptexw.3 𝑥𝐴 𝐵𝐶
Assertion
Ref Expression
mptexw (𝑥𝐴𝐵) ∈ V
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 6472 . 2 Fun (𝑥𝐴𝐵)
2 mptexw.1 . . 3 𝐴 ∈ V
3 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmptss 6144 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
52, 4ssexi 5246 . 2 dom (𝑥𝐴𝐵) ∈ V
6 mptexw.2 . . 3 𝐶 ∈ V
7 mptexw.3 . . . 4 𝑥𝐴 𝐵𝐶
83rnmptss 6996 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ran (𝑥𝐴𝐵) ⊆ 𝐶)
97, 8ax-mp 5 . . 3 ran (𝑥𝐴𝐵) ⊆ 𝐶
106, 9ssexi 5246 . 2 ran (𝑥𝐴𝐵) ∈ V
11 funexw 7794 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V ∧ ran (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
121, 5, 10, 11mp3an 1460 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wral 3064  Vcvv 3432  wss 3887  cmpt 5157  dom cdm 5589  ran crn 5590  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by:  grpinvfval  18618  odfval  19140
  Copyright terms: Public domain W3C validator