MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptexw Structured version   Visualization version   GIF version

Theorem mptexw 7931
Description: Weak version of mptex 7197 that holds without ax-rep 5234. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mptexw.1 𝐴 ∈ V
mptexw.2 𝐶 ∈ V
mptexw.3 𝑥𝐴 𝐵𝐶
Assertion
Ref Expression
mptexw (𝑥𝐴𝐵) ∈ V
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem mptexw
StepHypRef Expression
1 funmpt 6554 . 2 Fun (𝑥𝐴𝐵)
2 mptexw.1 . . 3 𝐴 ∈ V
3 eqid 2729 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmptss 6214 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
52, 4ssexi 5277 . 2 dom (𝑥𝐴𝐵) ∈ V
6 mptexw.2 . . 3 𝐶 ∈ V
7 mptexw.3 . . . 4 𝑥𝐴 𝐵𝐶
83rnmptss 7095 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ran (𝑥𝐴𝐵) ⊆ 𝐶)
97, 8ax-mp 5 . . 3 ran (𝑥𝐴𝐵) ⊆ 𝐶
106, 9ssexi 5277 . 2 ran (𝑥𝐴𝐵) ∈ V
11 funexw 7930 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V ∧ ran (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
121, 5, 10, 11mp3an 1463 1 (𝑥𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3044  Vcvv 3447  wss 3914  cmpt 5188  dom cdm 5638  ran crn 5639  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  grpinvfval  18910  odfval  19462
  Copyright terms: Public domain W3C validator