| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptexw | Structured version Visualization version GIF version | ||
| Description: Weak version of mptex 7157 that holds without ax-rep 5215. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mptexw.1 | ⊢ 𝐴 ∈ V |
| mptexw.2 | ⊢ 𝐶 ∈ V |
| mptexw.3 | ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| mptexw | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6519 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | mptexw.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | eqid 2731 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | dmmptss 6188 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 5 | 2, 4 | ssexi 5258 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 6 | mptexw.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | mptexw.3 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
| 8 | 3 | rnmptss 7056 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶) |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶 |
| 10 | 6, 9 | ssexi 5258 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 11 | funexw 7884 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 12 | 1, 5, 10, 11 | mp3an 1463 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 ↦ cmpt 5170 dom cdm 5614 ran crn 5615 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: grpinvfval 18891 odfval 19444 |
| Copyright terms: Public domain | W3C validator |