| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptexw | Structured version Visualization version GIF version | ||
| Description: Weak version of mptex 7197 that holds without ax-rep 5234. If the domain and codomain of a function given by maps-to notation are sets, the function is a set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mptexw.1 | ⊢ 𝐴 ∈ V |
| mptexw.2 | ⊢ 𝐶 ∈ V |
| mptexw.3 | ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| mptexw | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6554 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | mptexw.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | dmmptss 6214 | . . 3 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 5 | 2, 4 | ssexi 5277 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 6 | mptexw.2 | . . 3 ⊢ 𝐶 ∈ V | |
| 7 | mptexw.3 | . . . 4 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 | |
| 8 | 3 | rnmptss 7095 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶) |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐶 |
| 10 | 6, 9 | ssexi 5277 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| 11 | funexw 7930 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 12 | 1, 5, 10, 11 | mp3an 1463 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: grpinvfval 18910 odfval 19462 |
| Copyright terms: Public domain | W3C validator |