MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funrnex Structured version   Visualization version   GIF version

Theorem funrnex 7856
Description: If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 7145. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
funrnex (dom 𝐹𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V))

Proof of Theorem funrnex
StepHypRef Expression
1 funex 7145 . . 3 ((Fun 𝐹 ∧ dom 𝐹𝐵) → 𝐹 ∈ V)
21ex 413 . 2 (Fun 𝐹 → (dom 𝐹𝐵𝐹 ∈ V))
3 rnexg 7811 . 2 (𝐹 ∈ V → ran 𝐹 ∈ V)
42, 3syl6com 37 1 (dom 𝐹𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  Vcvv 3441  dom cdm 5614  ran crn 5615  Fun wfun 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481
This theorem is referenced by:  zfrep6  7857  focdmex  7858  tz7.48-3  8337  inf0  9470  axcc2lem  10285  zorn2lem4  10348  fnct  10386
  Copyright terms: Public domain W3C validator