| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funrnex | Structured version Visualization version GIF version | ||
| Description: If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 7153. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| funrnex | ⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funex 7153 | . . 3 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → 𝐹 ∈ V) | |
| 2 | 1 | ex 412 | . 2 ⊢ (Fun 𝐹 → (dom 𝐹 ∈ 𝐵 → 𝐹 ∈ V)) |
| 3 | rnexg 7832 | . 2 ⊢ (𝐹 ∈ V → ran 𝐹 ∈ V) | |
| 4 | 2, 3 | syl6com 37 | 1 ⊢ (dom 𝐹 ∈ 𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 dom cdm 5614 ran crn 5615 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: zfrep6 7887 focdmex 7888 tz7.48-3 8363 inf0 9511 axcc2lem 10327 zorn2lem4 10390 fnct 10428 tfsconcatrev 43451 fonex 48977 |
| Copyright terms: Public domain | W3C validator |