MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funrnex Structured version   Visualization version   GIF version

Theorem funrnex 7977
Description: If the domain of a function exists, so does its range. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of funex 7239. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
funrnex (dom 𝐹𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V))

Proof of Theorem funrnex
StepHypRef Expression
1 funex 7239 . . 3 ((Fun 𝐹 ∧ dom 𝐹𝐵) → 𝐹 ∈ V)
21ex 412 . 2 (Fun 𝐹 → (dom 𝐹𝐵𝐹 ∈ V))
3 rnexg 7925 . 2 (𝐹 ∈ V → ran 𝐹 ∈ V)
42, 3syl6com 37 1 (dom 𝐹𝐵 → (Fun 𝐹 → ran 𝐹 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3478  dom cdm 5689  ran crn 5690  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571
This theorem is referenced by:  zfrep6  7978  focdmex  7979  tz7.48-3  8483  inf0  9659  axcc2lem  10474  zorn2lem4  10537  fnct  10575  tfsconcatrev  43338
  Copyright terms: Public domain W3C validator