![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcidmd | Structured version Visualization version GIF version |
Description: Moore closure is idempotent. Deduction form of mrcidm 17590. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrcssidd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrcssidd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrcssidd.3 | ⊢ (𝜑 → 𝑈 ⊆ 𝑋) |
Ref | Expression |
---|---|
mrcidmd | ⊢ (𝜑 → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcssidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrcssidd.3 | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑋) | |
3 | mrcssidd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
4 | 3 | mrcidm 17590 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) |
5 | 1, 2, 4 | syl2anc 583 | 1 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑈)) = (𝑁‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 ‘cfv 6542 Moorecmre 17553 mrClscmrc 17554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-mre 17557 df-mrc 17558 |
This theorem is referenced by: mressmrcd 17598 mreexexlem2d 17616 acsmap2d 18538 |
Copyright terms: Public domain | W3C validator |