MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcidmd Structured version   Visualization version   GIF version

Theorem mrcidmd 17154
Description: Moore closure is idempotent. Deduction form of mrcidm 17147. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssidd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssidd.2 𝑁 = (mrCls‘𝐴)
mrcssidd.3 (𝜑𝑈𝑋)
Assertion
Ref Expression
mrcidmd (𝜑 → (𝑁‘(𝑁𝑈)) = (𝑁𝑈))

Proof of Theorem mrcidmd
StepHypRef Expression
1 mrcssidd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssidd.3 . 2 (𝜑𝑈𝑋)
3 mrcssidd.2 . . 3 𝑁 = (mrCls‘𝐴)
43mrcidm 17147 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝑁‘(𝑁𝑈)) = (𝑁𝑈))
51, 2, 4syl2anc 587 1 (𝜑 → (𝑁‘(𝑁𝑈)) = (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2111  wss 3881  cfv 6398  Moorecmre 17110  mrClscmrc 17111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-int 4875  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-fv 6406  df-mre 17114  df-mrc 17115
This theorem is referenced by:  mressmrcd  17155  mreexexlem2d  17173  acsmap2d  18086
  Copyright terms: Public domain W3C validator