MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsmap2d Structured version   Visualization version   GIF version

Theorem acsmap2d 18015
Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 18014 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 17097, ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsmap2d.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsmap2d.2 𝑁 = (mrCls‘𝐴)
acsmap2d.3 𝐼 = (mrInd‘𝐴)
acsmap2d.4 (𝜑𝑆𝐼)
acsmap2d.5 (𝜑𝑇𝑋)
acsmap2d.6 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
acsmap2d (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓))
Distinct variable groups:   𝑆,𝑓   𝑇,𝑓   𝜑,𝑓   𝑓,𝑁
Allowed substitution hints:   𝐴(𝑓)   𝐼(𝑓)   𝑋(𝑓)

Proof of Theorem acsmap2d
StepHypRef Expression
1 acsmap2d.1 . . 3 (𝜑𝐴 ∈ (ACS‘𝑋))
2 acsmap2d.2 . . 3 𝑁 = (mrCls‘𝐴)
3 acsmap2d.3 . . . 4 𝐼 = (mrInd‘𝐴)
41acsmred 17113 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
5 acsmap2d.4 . . . 4 (𝜑𝑆𝐼)
63, 4, 5mrissd 17093 . . 3 (𝜑𝑆𝑋)
7 acsmap2d.5 . . . . 5 (𝜑𝑇𝑋)
84, 2, 7mrcssidd 17082 . . . 4 (𝜑𝑇 ⊆ (𝑁𝑇))
9 acsmap2d.6 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
108, 9sseqtrrd 3928 . . 3 (𝜑𝑇 ⊆ (𝑁𝑆))
111, 2, 6, 10acsmapd 18014 . 2 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)))
12 simprl 771 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin))
134adantr 484 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝐴 ∈ (Moore‘𝑋))
145adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝑆𝐼)
153, 13, 14mrissd 17093 . . . . . . . 8 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝑆𝑋)
1613, 2, 15mrcssidd 17082 . . . . . . 7 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝑆 ⊆ (𝑁𝑆))
179adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → (𝑁𝑆) = (𝑁𝑇))
18 simprr 773 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝑇 ⊆ (𝑁 ran 𝑓))
1913, 2mrcssvd 17080 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → (𝑁 ran 𝑓) ⊆ 𝑋)
2013, 2, 18, 19mrcssd 17081 . . . . . . . . 9 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → (𝑁𝑇) ⊆ (𝑁‘(𝑁 ran 𝑓)))
21 frn 6530 . . . . . . . . . . . . . 14 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin))
2221unissd 4815 . . . . . . . . . . . . 13 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 (𝒫 𝑆 ∩ Fin))
23 unifpw 8957 . . . . . . . . . . . . 13 (𝒫 𝑆 ∩ Fin) = 𝑆
2422, 23sseqtrdi 3937 . . . . . . . . . . . 12 (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓𝑆)
2524ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → ran 𝑓𝑆)
2625, 15sstrd 3897 . . . . . . . . . 10 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → ran 𝑓𝑋)
2713, 2, 26mrcidmd 17083 . . . . . . . . 9 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → (𝑁‘(𝑁 ran 𝑓)) = (𝑁 ran 𝑓))
2820, 27sseqtrd 3927 . . . . . . . 8 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → (𝑁𝑇) ⊆ (𝑁 ran 𝑓))
2917, 28eqsstrd 3925 . . . . . . 7 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → (𝑁𝑆) ⊆ (𝑁 ran 𝑓))
3016, 29sstrd 3897 . . . . . 6 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝑆 ⊆ (𝑁 ran 𝑓))
3113, 2, 3, 30, 25, 14mrissmrcd 17097 . . . . 5 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → 𝑆 = ran 𝑓)
3212, 31jca 515 . . . 4 ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓))
3332ex 416 . . 3 (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)))
3433eximdv 1925 . 2 (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁 ran 𝑓)) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓)))
3511, 34mpd 15 1 (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ran 𝑓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2112  cin 3852  wss 3853  𝒫 cpw 4499   cuni 4805  ran crn 5537  wf 6354  cfv 6358  Fincfn 8604  Moorecmre 17039  mrClscmrc 17040  mrIndcmri 17041  ACScacs 17042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-reg 9186  ax-inf2 9234  ax-ac2 10042  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-r1 9345  df-rank 9346  df-card 9520  df-ac 9695  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-tset 16768  df-ple 16769  df-ocomp 16770  df-mre 17043  df-mrc 17044  df-mri 17045  df-acs 17046  df-proset 17756  df-drs 17757  df-poset 17774  df-ipo 17988
This theorem is referenced by:  acsinfd  18016  acsdomd  18017
  Copyright terms: Public domain W3C validator