Step | Hyp | Ref
| Expression |
1 | | acsmap2d.1 |
. . 3
β’ (π β π΄ β (ACSβπ)) |
2 | | acsmap2d.2 |
. . 3
β’ π = (mrClsβπ΄) |
3 | | acsmap2d.3 |
. . . 4
β’ πΌ = (mrIndβπ΄) |
4 | 1 | acsmred 17604 |
. . . 4
β’ (π β π΄ β (Mooreβπ)) |
5 | | acsmap2d.4 |
. . . 4
β’ (π β π β πΌ) |
6 | 3, 4, 5 | mrissd 17584 |
. . 3
β’ (π β π β π) |
7 | | acsmap2d.5 |
. . . . 5
β’ (π β π β π) |
8 | 4, 2, 7 | mrcssidd 17573 |
. . . 4
β’ (π β π β (πβπ)) |
9 | | acsmap2d.6 |
. . . 4
β’ (π β (πβπ) = (πβπ)) |
10 | 8, 9 | sseqtrrd 4023 |
. . 3
β’ (π β π β (πβπ)) |
11 | 1, 2, 6, 10 | acsmapd 18511 |
. 2
β’ (π β βπ(π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) |
12 | | simprl 769 |
. . . . 5
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π:πβΆ(π« π β© Fin)) |
13 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π΄ β (Mooreβπ)) |
14 | 5 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π β πΌ) |
15 | 3, 13, 14 | mrissd 17584 |
. . . . . . . 8
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π β π) |
16 | 13, 2, 15 | mrcssidd 17573 |
. . . . . . 7
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π β (πβπ)) |
17 | 9 | adantr 481 |
. . . . . . . 8
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β (πβπ) = (πβπ)) |
18 | | simprr 771 |
. . . . . . . . . 10
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π β (πββͺ ran
π)) |
19 | 13, 2 | mrcssvd 17571 |
. . . . . . . . . 10
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β (πββͺ ran π) β π) |
20 | 13, 2, 18, 19 | mrcssd 17572 |
. . . . . . . . 9
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β (πβπ) β (πβ(πββͺ ran
π))) |
21 | | frn 6724 |
. . . . . . . . . . . . . 14
β’ (π:πβΆ(π« π β© Fin) β ran π β (π« π β© Fin)) |
22 | 21 | unissd 4918 |
. . . . . . . . . . . . 13
β’ (π:πβΆ(π« π β© Fin) β βͺ ran π β βͺ
(π« π β©
Fin)) |
23 | | unifpw 9357 |
. . . . . . . . . . . . 13
β’ βͺ (π« π β© Fin) = π |
24 | 22, 23 | sseqtrdi 4032 |
. . . . . . . . . . . 12
β’ (π:πβΆ(π« π β© Fin) β βͺ ran π β π) |
25 | 24 | ad2antrl 726 |
. . . . . . . . . . 11
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β βͺ ran π β π) |
26 | 25, 15 | sstrd 3992 |
. . . . . . . . . 10
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β βͺ ran π β π) |
27 | 13, 2, 26 | mrcidmd 17574 |
. . . . . . . . 9
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β (πβ(πββͺ ran
π)) = (πββͺ ran
π)) |
28 | 20, 27 | sseqtrd 4022 |
. . . . . . . 8
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β (πβπ) β (πββͺ ran
π)) |
29 | 17, 28 | eqsstrd 4020 |
. . . . . . 7
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β (πβπ) β (πββͺ ran
π)) |
30 | 16, 29 | sstrd 3992 |
. . . . . 6
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π β (πββͺ ran
π)) |
31 | 13, 2, 3, 30, 25, 14 | mrissmrcd 17588 |
. . . . 5
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β π = βͺ
ran π) |
32 | 12, 31 | jca 512 |
. . . 4
β’ ((π β§ (π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π))) β (π:πβΆ(π« π β© Fin) β§ π = βͺ ran π)) |
33 | 32 | ex 413 |
. . 3
β’ (π β ((π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π)) β (π:πβΆ(π« π β© Fin) β§ π = βͺ ran π))) |
34 | 33 | eximdv 1920 |
. 2
β’ (π β (βπ(π:πβΆ(π« π β© Fin) β§ π β (πββͺ ran
π)) β βπ(π:πβΆ(π« π β© Fin) β§ π = βͺ ran π))) |
35 | 11, 34 | mpd 15 |
1
β’ (π β βπ(π:πβΆ(π« π β© Fin) β§ π = βͺ ran π)) |