| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmap2d | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 18457 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ∪ ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 17543, ∪ ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| Ref | Expression |
|---|---|
| acsmap2d | ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsmap2d.3 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | 1 | acsmred 17559 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 5 | acsmap2d.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 6 | 3, 4, 5 | mrissd 17539 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 7 | acsmap2d.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
| 8 | 4, 2, 7 | mrcssidd 17528 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
| 9 | acsmap2d.6 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 10 | 8, 9 | sseqtrrd 3972 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
| 11 | 1, 2, 6, 10 | acsmapd 18457 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) |
| 12 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
| 13 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝐴 ∈ (Moore‘𝑋)) |
| 14 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ∈ 𝐼) |
| 15 | 3, 13, 14 | mrissd 17539 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ 𝑋) |
| 16 | 13, 2, 15 | mrcssidd 17528 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘𝑆)) |
| 17 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| 18 | simprr 772 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) | |
| 19 | 13, 2 | mrcssvd 17526 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘∪ ran 𝑓) ⊆ 𝑋) |
| 20 | 13, 2, 18, 19 | mrcssd 17527 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑁‘∪ ran 𝑓))) |
| 21 | frn 6658 | . . . . . . . . . . . . . 14 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin)) | |
| 22 | 21 | unissd 4869 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ ∪ (𝒫 𝑆 ∩ Fin)) |
| 23 | unifpw 9239 | . . . . . . . . . . . . 13 ⊢ ∪ (𝒫 𝑆 ∩ Fin) = 𝑆 | |
| 24 | 22, 23 | sseqtrdi 3975 | . . . . . . . . . . . 12 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ 𝑆) |
| 25 | 24 | ad2antrl 728 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑆) |
| 26 | 25, 15 | sstrd 3945 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑋) |
| 27 | 13, 2, 26 | mrcidmd 17529 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘(𝑁‘∪ ran 𝑓)) = (𝑁‘∪ ran 𝑓)) |
| 28 | 20, 27 | sseqtrd 3971 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘∪ ran 𝑓)) |
| 29 | 17, 28 | eqsstrd 3969 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) ⊆ (𝑁‘∪ ran 𝑓)) |
| 30 | 16, 29 | sstrd 3945 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘∪ ran 𝑓)) |
| 31 | 13, 2, 3, 30, 25, 14 | mrissmrcd 17543 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 = ∪ ran 𝑓) |
| 32 | 12, 31 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
| 34 | 33 | eximdv 1918 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
| 35 | 11, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 ran crn 5617 ⟶wf 6477 ‘cfv 6481 Fincfn 8869 Moorecmre 17481 mrClscmrc 17482 mrIndcmri 17483 ACScacs 17484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 ax-ac2 10351 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-r1 9654 df-rank 9655 df-card 9829 df-ac 10004 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-tset 17177 df-ple 17178 df-ocomp 17179 df-mre 17485 df-mrc 17486 df-mri 17487 df-acs 17488 df-proset 18197 df-drs 18198 df-poset 18216 df-ipo 18431 |
| This theorem is referenced by: acsinfd 18459 acsdomd 18460 |
| Copyright terms: Public domain | W3C validator |