| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsmap2d | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 18564 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ∪ ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 17652, ∪ ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
| acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| Ref | Expression |
|---|---|
| acsmap2d | ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 3 | acsmap2d.3 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 4 | 1 | acsmred 17668 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 5 | acsmap2d.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 6 | 3, 4, 5 | mrissd 17648 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
| 7 | acsmap2d.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
| 8 | 4, 2, 7 | mrcssidd 17637 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
| 9 | acsmap2d.6 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 10 | 8, 9 | sseqtrrd 3996 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
| 11 | 1, 2, 6, 10 | acsmapd 18564 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) |
| 12 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
| 13 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝐴 ∈ (Moore‘𝑋)) |
| 14 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ∈ 𝐼) |
| 15 | 3, 13, 14 | mrissd 17648 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ 𝑋) |
| 16 | 13, 2, 15 | mrcssidd 17637 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘𝑆)) |
| 17 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| 18 | simprr 772 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) | |
| 19 | 13, 2 | mrcssvd 17635 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘∪ ran 𝑓) ⊆ 𝑋) |
| 20 | 13, 2, 18, 19 | mrcssd 17636 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑁‘∪ ran 𝑓))) |
| 21 | frn 6713 | . . . . . . . . . . . . . 14 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin)) | |
| 22 | 21 | unissd 4893 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ ∪ (𝒫 𝑆 ∩ Fin)) |
| 23 | unifpw 9367 | . . . . . . . . . . . . 13 ⊢ ∪ (𝒫 𝑆 ∩ Fin) = 𝑆 | |
| 24 | 22, 23 | sseqtrdi 3999 | . . . . . . . . . . . 12 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ 𝑆) |
| 25 | 24 | ad2antrl 728 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑆) |
| 26 | 25, 15 | sstrd 3969 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑋) |
| 27 | 13, 2, 26 | mrcidmd 17638 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘(𝑁‘∪ ran 𝑓)) = (𝑁‘∪ ran 𝑓)) |
| 28 | 20, 27 | sseqtrd 3995 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘∪ ran 𝑓)) |
| 29 | 17, 28 | eqsstrd 3993 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) ⊆ (𝑁‘∪ ran 𝑓)) |
| 30 | 16, 29 | sstrd 3969 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘∪ ran 𝑓)) |
| 31 | 13, 2, 3, 30, 25, 14 | mrissmrcd 17652 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 = ∪ ran 𝑓) |
| 32 | 12, 31 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
| 34 | 33 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
| 35 | 11, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ran crn 5655 ⟶wf 6527 ‘cfv 6531 Fincfn 8959 Moorecmre 17594 mrClscmrc 17595 mrIndcmri 17596 ACScacs 17597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-r1 9778 df-rank 9779 df-card 9953 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-tset 17290 df-ple 17291 df-ocomp 17292 df-mre 17598 df-mrc 17599 df-mri 17600 df-acs 17601 df-proset 18306 df-drs 18307 df-poset 18325 df-ipo 18538 |
| This theorem is referenced by: acsinfd 18566 acsdomd 18567 |
| Copyright terms: Public domain | W3C validator |