![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsmap2d | Structured version Visualization version GIF version |
Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 17605 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ∪ ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 16728, ∪ ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
Ref | Expression |
---|---|
acsmap2d | ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | acsmap2d.3 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | 1 | acsmred 16744 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
5 | acsmap2d.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 4, 5 | mrissd 16724 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | acsmap2d.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
8 | 4, 2, 7 | mrcssidd 16713 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
9 | acsmap2d.6 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
10 | 8, 9 | sseqtr4d 3924 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
11 | 1, 2, 6, 10 | acsmapd 17605 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) |
12 | simprl 767 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
13 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝐴 ∈ (Moore‘𝑋)) |
14 | 5 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ∈ 𝐼) |
15 | 3, 13, 14 | mrissd 16724 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ 𝑋) |
16 | 13, 2, 15 | mrcssidd 16713 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘𝑆)) |
17 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) = (𝑁‘𝑇)) |
18 | simprr 769 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) | |
19 | 13, 2 | mrcssvd 16711 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘∪ ran 𝑓) ⊆ 𝑋) |
20 | 13, 2, 18, 19 | mrcssd 16712 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑁‘∪ ran 𝑓))) |
21 | frn 6380 | . . . . . . . . . . . . . 14 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin)) | |
22 | 21 | unissd 4763 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ ∪ (𝒫 𝑆 ∩ Fin)) |
23 | unifpw 8663 | . . . . . . . . . . . . 13 ⊢ ∪ (𝒫 𝑆 ∩ Fin) = 𝑆 | |
24 | 22, 23 | syl6sseq 3933 | . . . . . . . . . . . 12 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ 𝑆) |
25 | 24 | ad2antrl 724 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑆) |
26 | 25, 15 | sstrd 3894 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑋) |
27 | 13, 2, 26 | mrcidmd 16714 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘(𝑁‘∪ ran 𝑓)) = (𝑁‘∪ ran 𝑓)) |
28 | 20, 27 | sseqtrd 3923 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘∪ ran 𝑓)) |
29 | 17, 28 | eqsstrd 3921 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) ⊆ (𝑁‘∪ ran 𝑓)) |
30 | 16, 29 | sstrd 3894 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘∪ ran 𝑓)) |
31 | 13, 2, 3, 30, 25, 14 | mrissmrcd 16728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 = ∪ ran 𝑓) |
32 | 12, 31 | jca 512 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
33 | 32 | ex 413 | . . 3 ⊢ (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
34 | 33 | eximdv 1893 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
35 | 11, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∃wex 1759 ∈ wcel 2079 ∩ cin 3853 ⊆ wss 3854 𝒫 cpw 4447 ∪ cuni 4739 ran crn 5436 ⟶wf 6213 ‘cfv 6217 Fincfn 8347 Moorecmre 16670 mrClscmrc 16671 mrIndcmri 16672 ACScacs 16673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-reg 8892 ax-inf2 8939 ax-ac2 9720 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-iin 4822 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-se 5395 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-isom 6226 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-oadd 7948 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-r1 9028 df-rank 9029 df-card 9203 df-ac 9377 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-n0 11735 df-z 11819 df-dec 11937 df-uz 12083 df-fz 12732 df-struct 16302 df-ndx 16303 df-slot 16304 df-base 16306 df-tset 16401 df-ple 16402 df-ocomp 16403 df-mre 16674 df-mrc 16675 df-mri 16676 df-acs 16677 df-proset 17355 df-drs 17356 df-poset 17373 df-ipo 17579 |
This theorem is referenced by: acsinfd 17607 acsdomd 17608 |
Copyright terms: Public domain | W3C validator |