Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acsmap2d | Structured version Visualization version GIF version |
Description: In an algebraic closure system, if 𝑆 and 𝑇 have the same closure and 𝑆 is independent, then there is a map 𝑓 from 𝑇 into the set of finite subsets of 𝑆 such that 𝑆 equals the union of ran 𝑓. This is proven by taking the map 𝑓 from acsmapd 18272 and observing that, since 𝑆 and 𝑇 have the same closure, the closure of ∪ ran 𝑓 must contain 𝑆. Since 𝑆 is independent, by mrissmrcd 17349, ∪ ran 𝑓 must equal 𝑆. See Section II.5 in [Cohn] p. 81 to 82. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsmap2d.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
acsmap2d.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
acsmap2d.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
acsmap2d.4 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
acsmap2d.5 | ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
acsmap2d.6 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
Ref | Expression |
---|---|
acsmap2d | ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsmap2d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
2 | acsmap2d.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | acsmap2d.3 | . . . 4 ⊢ 𝐼 = (mrInd‘𝐴) | |
4 | 1 | acsmred 17365 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
5 | acsmap2d.4 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
6 | 3, 4, 5 | mrissd 17345 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
7 | acsmap2d.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) | |
8 | 4, 2, 7 | mrcssidd 17334 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑇)) |
9 | acsmap2d.6 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
10 | 8, 9 | sseqtrrd 3962 | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝑁‘𝑆)) |
11 | 1, 2, 6, 10 | acsmapd 18272 | . 2 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) |
12 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin)) | |
13 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝐴 ∈ (Moore‘𝑋)) |
14 | 5 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ∈ 𝐼) |
15 | 3, 13, 14 | mrissd 17345 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ 𝑋) |
16 | 13, 2, 15 | mrcssidd 17334 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘𝑆)) |
17 | 9 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) = (𝑁‘𝑇)) |
18 | simprr 770 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) | |
19 | 13, 2 | mrcssvd 17332 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘∪ ran 𝑓) ⊆ 𝑋) |
20 | 13, 2, 18, 19 | mrcssd 17333 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘(𝑁‘∪ ran 𝑓))) |
21 | frn 6607 | . . . . . . . . . . . . . 14 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑆 ∩ Fin)) | |
22 | 21 | unissd 4849 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ ∪ (𝒫 𝑆 ∩ Fin)) |
23 | unifpw 9122 | . . . . . . . . . . . . 13 ⊢ ∪ (𝒫 𝑆 ∩ Fin) = 𝑆 | |
24 | 22, 23 | sseqtrdi 3971 | . . . . . . . . . . . 12 ⊢ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) → ∪ ran 𝑓 ⊆ 𝑆) |
25 | 24 | ad2antrl 725 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑆) |
26 | 25, 15 | sstrd 3931 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → ∪ ran 𝑓 ⊆ 𝑋) |
27 | 13, 2, 26 | mrcidmd 17335 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘(𝑁‘∪ ran 𝑓)) = (𝑁‘∪ ran 𝑓)) |
28 | 20, 27 | sseqtrd 3961 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑇) ⊆ (𝑁‘∪ ran 𝑓)) |
29 | 17, 28 | eqsstrd 3959 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑁‘𝑆) ⊆ (𝑁‘∪ ran 𝑓)) |
30 | 16, 29 | sstrd 3931 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 ⊆ (𝑁‘∪ ran 𝑓)) |
31 | 13, 2, 3, 30, 25, 14 | mrissmrcd 17349 | . . . . 5 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → 𝑆 = ∪ ran 𝑓) |
32 | 12, 31 | jca 512 | . . . 4 ⊢ ((𝜑 ∧ (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓))) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
33 | 32 | ex 413 | . . 3 ⊢ (𝜑 → ((𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → (𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
34 | 33 | eximdv 1920 | . 2 ⊢ (𝜑 → (∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑇 ⊆ (𝑁‘∪ ran 𝑓)) → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓))) |
35 | 11, 34 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑓(𝑓:𝑇⟶(𝒫 𝑆 ∩ Fin) ∧ 𝑆 = ∪ ran 𝑓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ran crn 5590 ⟶wf 6429 ‘cfv 6433 Fincfn 8733 Moorecmre 17291 mrClscmrc 17292 mrIndcmri 17293 ACScacs 17294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-r1 9522 df-rank 9523 df-card 9697 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-tset 16981 df-ple 16982 df-ocomp 16983 df-mre 17295 df-mrc 17296 df-mri 17297 df-acs 17298 df-proset 18013 df-drs 18014 df-poset 18031 df-ipo 18246 |
This theorem is referenced by: acsinfd 18274 acsdomd 18275 |
Copyright terms: Public domain | W3C validator |