MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssidd Structured version   Visualization version   GIF version

Theorem mrcssidd 16596
Description: A set is contained in its Moore closure. Deduction form of mrcssid 16588. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssidd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssidd.2 𝑁 = (mrCls‘𝐴)
mrcssidd.3 (𝜑𝑈𝑋)
Assertion
Ref Expression
mrcssidd (𝜑𝑈 ⊆ (𝑁𝑈))

Proof of Theorem mrcssidd
StepHypRef Expression
1 mrcssidd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssidd.3 . 2 (𝜑𝑈𝑋)
3 mrcssidd.2 . . 3 𝑁 = (mrCls‘𝐴)
43mrcssid 16588 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝑁𝑈))
51, 2, 4syl2anc 580 1 (𝜑𝑈 ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  wss 3767  cfv 6099  Moorecmre 16553  mrClscmrc 16554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-int 4666  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-fv 6107  df-mre 16557  df-mrc 16558
This theorem is referenced by:  submrc  16599  mrieqvlemd  16600  mrieqv2d  16610  mreexmrid  16614  mreexexlem2d  16616  mreexexlem3d  16617  mreexfidimd  16621  isacs2  16624  acsmap2d  17490  cycsubg2cl  17941  odf1o1  18296  gsumzsplit  18638  gsumzoppg  18655  gsumpt  18672  dprdfeq0  18733  dprdspan  18738  subgdmdprd  18745  subgdprd  18746  dprd2dlem1  18752  dprd2da  18753  dmdprdsplit2lem  18756  pgpfac1lem1  18785  pgpfac1lem3a  18787  pgpfac1lem3  18788  pgpfac1lem5  18790  pgpfaclem2  18793  proot1mul  38549
  Copyright terms: Public domain W3C validator