MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssidd Structured version   Visualization version   GIF version

Theorem mrcssidd 17549
Description: A set is contained in its Moore closure. Deduction form of mrcssid 17541. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssidd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssidd.2 𝑁 = (mrCls‘𝐴)
mrcssidd.3 (𝜑𝑈𝑋)
Assertion
Ref Expression
mrcssidd (𝜑𝑈 ⊆ (𝑁𝑈))

Proof of Theorem mrcssidd
StepHypRef Expression
1 mrcssidd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssidd.3 . 2 (𝜑𝑈𝑋)
3 mrcssidd.2 . . 3 𝑁 = (mrCls‘𝐴)
43mrcssid 17541 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝑁𝑈))
51, 2, 4syl2anc 584 1 (𝜑𝑈 ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905  cfv 6486  Moorecmre 17502  mrClscmrc 17503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-mre 17506  df-mrc 17507
This theorem is referenced by:  submrc  17552  mrieqvlemd  17553  mrieqv2d  17563  mreexmrid  17567  mreexexlem2d  17569  mreexexlem3d  17570  mreexfidimd  17574  isacs2  17577  acsmap2d  18479  cycsubg2cl  19108  odf1o1  19469  gsumzsplit  19824  gsumzoppg  19841  gsumpt  19859  dprdfeq0  19921  dprdspan  19926  subgdmdprd  19933  subgdprd  19934  dprd2dlem1  19940  dprd2da  19941  dmdprdsplit2lem  19944  pgpfac1lem1  19973  pgpfac1lem3a  19975  pgpfac1lem3  19976  pgpfac1lem5  19978  pgpfaclem2  19981  proot1mul  43167
  Copyright terms: Public domain W3C validator