![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mrcssidd | Structured version Visualization version GIF version |
Description: A set is contained in its Moore closure. Deduction form of mrcssid 17604. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mrcssidd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mrcssidd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mrcssidd.3 | ⊢ (𝜑 → 𝑈 ⊆ 𝑋) |
Ref | Expression |
---|---|
mrcssidd | ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrcssidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mrcssidd.3 | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑋) | |
3 | mrcssidd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
4 | 3 | mrcssid 17604 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ (𝑁‘𝑈)) |
5 | 1, 2, 4 | syl2anc 582 | 1 ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3949 ‘cfv 6553 Moorecmre 17569 mrClscmrc 17570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-mre 17573 df-mrc 17574 |
This theorem is referenced by: submrc 17615 mrieqvlemd 17616 mrieqv2d 17626 mreexmrid 17630 mreexexlem2d 17632 mreexexlem3d 17633 mreexfidimd 17637 isacs2 17640 acsmap2d 18554 cycsubg2cl 19173 odf1o1 19534 gsumzsplit 19889 gsumzoppg 19906 gsumpt 19924 dprdfeq0 19986 dprdspan 19991 subgdmdprd 19998 subgdprd 19999 dprd2dlem1 20005 dprd2da 20006 dmdprdsplit2lem 20009 pgpfac1lem1 20038 pgpfac1lem3a 20040 pgpfac1lem3 20041 pgpfac1lem5 20043 pgpfaclem2 20046 proot1mul 42653 |
Copyright terms: Public domain | W3C validator |