| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mrcssidd | Structured version Visualization version GIF version | ||
| Description: A set is contained in its Moore closure. Deduction form of mrcssid 17585. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| mrcssidd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| mrcssidd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| mrcssidd.3 | ⊢ (𝜑 → 𝑈 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| mrcssidd | ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcssidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
| 2 | mrcssidd.3 | . 2 ⊢ (𝜑 → 𝑈 ⊆ 𝑋) | |
| 3 | mrcssidd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 4 | 3 | mrcssid 17585 | . 2 ⊢ ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈 ⊆ 𝑋) → 𝑈 ⊆ (𝑁‘𝑈)) |
| 5 | 1, 2, 4 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑈 ⊆ (𝑁‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 Moorecmre 17550 mrClscmrc 17551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-mre 17554 df-mrc 17555 |
| This theorem is referenced by: submrc 17596 mrieqvlemd 17597 mrieqv2d 17607 mreexmrid 17611 mreexexlem2d 17613 mreexexlem3d 17614 mreexfidimd 17618 isacs2 17621 acsmap2d 18521 cycsubg2cl 19150 odf1o1 19509 gsumzsplit 19864 gsumzoppg 19881 gsumpt 19899 dprdfeq0 19961 dprdspan 19966 subgdmdprd 19973 subgdprd 19974 dprd2dlem1 19980 dprd2da 19981 dmdprdsplit2lem 19984 pgpfac1lem1 20013 pgpfac1lem3a 20015 pgpfac1lem3 20016 pgpfac1lem5 20018 pgpfaclem2 20021 proot1mul 43190 |
| Copyright terms: Public domain | W3C validator |