MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssidd Structured version   Visualization version   GIF version

Theorem mrcssidd 17334
Description: A set is contained in its Moore closure. Deduction form of mrcssid 17326. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssidd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssidd.2 𝑁 = (mrCls‘𝐴)
mrcssidd.3 (𝜑𝑈𝑋)
Assertion
Ref Expression
mrcssidd (𝜑𝑈 ⊆ (𝑁𝑈))

Proof of Theorem mrcssidd
StepHypRef Expression
1 mrcssidd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssidd.3 . 2 (𝜑𝑈𝑋)
3 mrcssidd.2 . . 3 𝑁 = (mrCls‘𝐴)
43mrcssid 17326 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝑁𝑈))
51, 2, 4syl2anc 584 1 (𝜑𝑈 ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887  cfv 6433  Moorecmre 17291  mrClscmrc 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296
This theorem is referenced by:  submrc  17337  mrieqvlemd  17338  mrieqv2d  17348  mreexmrid  17352  mreexexlem2d  17354  mreexexlem3d  17355  mreexfidimd  17359  isacs2  17362  acsmap2d  18273  cycsubg2cl  18830  odf1o1  19177  gsumzsplit  19528  gsumzoppg  19545  gsumpt  19563  dprdfeq0  19625  dprdspan  19630  subgdmdprd  19637  subgdprd  19638  dprd2dlem1  19644  dprd2da  19645  dmdprdsplit2lem  19648  pgpfac1lem1  19677  pgpfac1lem3a  19679  pgpfac1lem3  19680  pgpfac1lem5  19682  pgpfaclem2  19685  proot1mul  41024
  Copyright terms: Public domain W3C validator