MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssidd Structured version   Visualization version   GIF version

Theorem mrcssidd 17642
Description: A set is contained in its Moore closure. Deduction form of mrcssid 17634. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssidd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrcssidd.2 𝑁 = (mrCls‘𝐴)
mrcssidd.3 (𝜑𝑈𝑋)
Assertion
Ref Expression
mrcssidd (𝜑𝑈 ⊆ (𝑁𝑈))

Proof of Theorem mrcssidd
StepHypRef Expression
1 mrcssidd.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mrcssidd.3 . 2 (𝜑𝑈𝑋)
3 mrcssidd.2 . . 3 𝑁 = (mrCls‘𝐴)
43mrcssid 17634 . 2 ((𝐴 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ⊆ (𝑁𝑈))
51, 2, 4syl2anc 584 1 (𝜑𝑈 ⊆ (𝑁𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3931  cfv 6536  Moorecmre 17599  mrClscmrc 17600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-mre 17603  df-mrc 17604
This theorem is referenced by:  submrc  17645  mrieqvlemd  17646  mrieqv2d  17656  mreexmrid  17660  mreexexlem2d  17662  mreexexlem3d  17663  mreexfidimd  17667  isacs2  17670  acsmap2d  18570  cycsubg2cl  19199  odf1o1  19558  gsumzsplit  19913  gsumzoppg  19930  gsumpt  19948  dprdfeq0  20010  dprdspan  20015  subgdmdprd  20022  subgdprd  20023  dprd2dlem1  20029  dprd2da  20030  dmdprdsplit2lem  20033  pgpfac1lem1  20062  pgpfac1lem3a  20064  pgpfac1lem3  20065  pgpfac1lem5  20067  pgpfaclem2  20070  proot1mul  43185
  Copyright terms: Public domain W3C validator