MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcssidd Structured version   Visualization version   GIF version

Theorem mrcssidd 17512
Description: A set is contained in its Moore closure. Deduction form of mrcssid 17504. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrcssidd.1 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
mrcssidd.2 𝑁 = (mrClsβ€˜π΄)
mrcssidd.3 (πœ‘ β†’ π‘ˆ βŠ† 𝑋)
Assertion
Ref Expression
mrcssidd (πœ‘ β†’ π‘ˆ βŠ† (π‘β€˜π‘ˆ))

Proof of Theorem mrcssidd
StepHypRef Expression
1 mrcssidd.1 . 2 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
2 mrcssidd.3 . 2 (πœ‘ β†’ π‘ˆ βŠ† 𝑋)
3 mrcssidd.2 . . 3 𝑁 = (mrClsβ€˜π΄)
43mrcssid 17504 . 2 ((𝐴 ∈ (Mooreβ€˜π‘‹) ∧ π‘ˆ βŠ† 𝑋) β†’ π‘ˆ βŠ† (π‘β€˜π‘ˆ))
51, 2, 4syl2anc 585 1 (πœ‘ β†’ π‘ˆ βŠ† (π‘β€˜π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   βŠ† wss 3915  β€˜cfv 6501  Moorecmre 17469  mrClscmrc 17470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-fv 6509  df-mre 17473  df-mrc 17474
This theorem is referenced by:  submrc  17515  mrieqvlemd  17516  mrieqv2d  17526  mreexmrid  17530  mreexexlem2d  17532  mreexexlem3d  17533  mreexfidimd  17537  isacs2  17540  acsmap2d  18451  cycsubg2cl  19011  odf1o1  19361  gsumzsplit  19711  gsumzoppg  19728  gsumpt  19746  dprdfeq0  19808  dprdspan  19813  subgdmdprd  19820  subgdprd  19821  dprd2dlem1  19827  dprd2da  19828  dmdprdsplit2lem  19831  pgpfac1lem1  19860  pgpfac1lem3a  19862  pgpfac1lem3  19863  pgpfac1lem5  19865  pgpfaclem2  19868  proot1mul  41555
  Copyright terms: Public domain W3C validator