MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mressmrcd Structured version   Visualization version   GIF version

Theorem mressmrcd 17336
Description: In a Moore system, if a set is between another set and its closure, the two sets have the same closure. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mressmrcd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mressmrcd.2 𝑁 = (mrCls‘𝐴)
mressmrcd.3 (𝜑𝑆 ⊆ (𝑁𝑇))
mressmrcd.4 (𝜑𝑇𝑆)
Assertion
Ref Expression
mressmrcd (𝜑 → (𝑁𝑆) = (𝑁𝑇))

Proof of Theorem mressmrcd
StepHypRef Expression
1 mressmrcd.1 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mressmrcd.2 . . . 4 𝑁 = (mrCls‘𝐴)
3 mressmrcd.3 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑇))
41, 2mrcssvd 17332 . . . 4 (𝜑 → (𝑁𝑇) ⊆ 𝑋)
51, 2, 3, 4mrcssd 17333 . . 3 (𝜑 → (𝑁𝑆) ⊆ (𝑁‘(𝑁𝑇)))
6 mressmrcd.4 . . . . 5 (𝜑𝑇𝑆)
73, 4sstrd 3931 . . . . 5 (𝜑𝑆𝑋)
86, 7sstrd 3931 . . . 4 (𝜑𝑇𝑋)
91, 2, 8mrcidmd 17335 . . 3 (𝜑 → (𝑁‘(𝑁𝑇)) = (𝑁𝑇))
105, 9sseqtrd 3961 . 2 (𝜑 → (𝑁𝑆) ⊆ (𝑁𝑇))
111, 2, 6, 7mrcssd 17333 . 2 (𝜑 → (𝑁𝑇) ⊆ (𝑁𝑆))
1210, 11eqssd 3938 1 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wss 3887  cfv 6433  Moorecmre 17291  mrClscmrc 17292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-mre 17295  df-mrc 17296
This theorem is referenced by:  mrieqvlemd  17338  mrissmrcd  17349
  Copyright terms: Public domain W3C validator