![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mressmrcd | Structured version Visualization version GIF version |
Description: In a Moore system, if a set is between another set and its closure, the two sets have the same closure. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
mressmrcd.1 | ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
mressmrcd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
mressmrcd.3 | ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) |
mressmrcd.4 | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
mressmrcd | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mressmrcd.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) | |
2 | mressmrcd.2 | . . . 4 ⊢ 𝑁 = (mrCls‘𝐴) | |
3 | mressmrcd.3 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (𝑁‘𝑇)) | |
4 | 1, 2 | mrcssvd 17668 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑇) ⊆ 𝑋) |
5 | 1, 2, 3, 4 | mrcssd 17669 | . . 3 ⊢ (𝜑 → (𝑁‘𝑆) ⊆ (𝑁‘(𝑁‘𝑇))) |
6 | mressmrcd.4 | . . . . 5 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
7 | 3, 4 | sstrd 4006 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝑋) |
8 | 6, 7 | sstrd 4006 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑋) |
9 | 1, 2, 8 | mrcidmd 17671 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑇)) = (𝑁‘𝑇)) |
10 | 5, 9 | sseqtrd 4036 | . 2 ⊢ (𝜑 → (𝑁‘𝑆) ⊆ (𝑁‘𝑇)) |
11 | 1, 2, 6, 7 | mrcssd 17669 | . 2 ⊢ (𝜑 → (𝑁‘𝑇) ⊆ (𝑁‘𝑆)) |
12 | 10, 11 | eqssd 4013 | 1 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ‘cfv 6563 Moorecmre 17627 mrClscmrc 17628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-mre 17631 df-mrc 17632 |
This theorem is referenced by: mrieqvlemd 17674 mrissmrcd 17685 |
Copyright terms: Public domain | W3C validator |