MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mressmrcd Structured version   Visualization version   GIF version

Theorem mressmrcd 17575
Description: In a Moore system, if a set is between another set and its closure, the two sets have the same closure. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mressmrcd.1 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
mressmrcd.2 𝑁 = (mrClsβ€˜π΄)
mressmrcd.3 (πœ‘ β†’ 𝑆 βŠ† (π‘β€˜π‘‡))
mressmrcd.4 (πœ‘ β†’ 𝑇 βŠ† 𝑆)
Assertion
Ref Expression
mressmrcd (πœ‘ β†’ (π‘β€˜π‘†) = (π‘β€˜π‘‡))

Proof of Theorem mressmrcd
StepHypRef Expression
1 mressmrcd.1 . . . 4 (πœ‘ β†’ 𝐴 ∈ (Mooreβ€˜π‘‹))
2 mressmrcd.2 . . . 4 𝑁 = (mrClsβ€˜π΄)
3 mressmrcd.3 . . . 4 (πœ‘ β†’ 𝑆 βŠ† (π‘β€˜π‘‡))
41, 2mrcssvd 17571 . . . 4 (πœ‘ β†’ (π‘β€˜π‘‡) βŠ† 𝑋)
51, 2, 3, 4mrcssd 17572 . . 3 (πœ‘ β†’ (π‘β€˜π‘†) βŠ† (π‘β€˜(π‘β€˜π‘‡)))
6 mressmrcd.4 . . . . 5 (πœ‘ β†’ 𝑇 βŠ† 𝑆)
73, 4sstrd 3992 . . . . 5 (πœ‘ β†’ 𝑆 βŠ† 𝑋)
86, 7sstrd 3992 . . . 4 (πœ‘ β†’ 𝑇 βŠ† 𝑋)
91, 2, 8mrcidmd 17574 . . 3 (πœ‘ β†’ (π‘β€˜(π‘β€˜π‘‡)) = (π‘β€˜π‘‡))
105, 9sseqtrd 4022 . 2 (πœ‘ β†’ (π‘β€˜π‘†) βŠ† (π‘β€˜π‘‡))
111, 2, 6, 7mrcssd 17572 . 2 (πœ‘ β†’ (π‘β€˜π‘‡) βŠ† (π‘β€˜π‘†))
1210, 11eqssd 3999 1 (πœ‘ β†’ (π‘β€˜π‘†) = (π‘β€˜π‘‡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  β€˜cfv 6543  Moorecmre 17530  mrClscmrc 17531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-mre 17534  df-mrc 17535
This theorem is referenced by:  mrieqvlemd  17577  mrissmrcd  17588
  Copyright terms: Public domain W3C validator