MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mressmrcd Structured version   Visualization version   GIF version

Theorem mressmrcd 17685
Description: In a Moore system, if a set is between another set and its closure, the two sets have the same closure. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mressmrcd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mressmrcd.2 𝑁 = (mrCls‘𝐴)
mressmrcd.3 (𝜑𝑆 ⊆ (𝑁𝑇))
mressmrcd.4 (𝜑𝑇𝑆)
Assertion
Ref Expression
mressmrcd (𝜑 → (𝑁𝑆) = (𝑁𝑇))

Proof of Theorem mressmrcd
StepHypRef Expression
1 mressmrcd.1 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mressmrcd.2 . . . 4 𝑁 = (mrCls‘𝐴)
3 mressmrcd.3 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑇))
41, 2mrcssvd 17681 . . . 4 (𝜑 → (𝑁𝑇) ⊆ 𝑋)
51, 2, 3, 4mrcssd 17682 . . 3 (𝜑 → (𝑁𝑆) ⊆ (𝑁‘(𝑁𝑇)))
6 mressmrcd.4 . . . . 5 (𝜑𝑇𝑆)
73, 4sstrd 4019 . . . . 5 (𝜑𝑆𝑋)
86, 7sstrd 4019 . . . 4 (𝜑𝑇𝑋)
91, 2, 8mrcidmd 17684 . . 3 (𝜑 → (𝑁‘(𝑁𝑇)) = (𝑁𝑇))
105, 9sseqtrd 4049 . 2 (𝜑 → (𝑁𝑆) ⊆ (𝑁𝑇))
111, 2, 6, 7mrcssd 17682 . 2 (𝜑 → (𝑁𝑇) ⊆ (𝑁𝑆))
1210, 11eqssd 4026 1 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wss 3976  cfv 6573  Moorecmre 17640  mrClscmrc 17641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-mre 17644  df-mrc 17645
This theorem is referenced by:  mrieqvlemd  17687  mrissmrcd  17698
  Copyright terms: Public domain W3C validator