MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mressmrcd Structured version   Visualization version   GIF version

Theorem mressmrcd 17533
Description: In a Moore system, if a set is between another set and its closure, the two sets have the same closure. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mressmrcd.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mressmrcd.2 𝑁 = (mrCls‘𝐴)
mressmrcd.3 (𝜑𝑆 ⊆ (𝑁𝑇))
mressmrcd.4 (𝜑𝑇𝑆)
Assertion
Ref Expression
mressmrcd (𝜑 → (𝑁𝑆) = (𝑁𝑇))

Proof of Theorem mressmrcd
StepHypRef Expression
1 mressmrcd.1 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
2 mressmrcd.2 . . . 4 𝑁 = (mrCls‘𝐴)
3 mressmrcd.3 . . . 4 (𝜑𝑆 ⊆ (𝑁𝑇))
41, 2mrcssvd 17529 . . . 4 (𝜑 → (𝑁𝑇) ⊆ 𝑋)
51, 2, 3, 4mrcssd 17530 . . 3 (𝜑 → (𝑁𝑆) ⊆ (𝑁‘(𝑁𝑇)))
6 mressmrcd.4 . . . . 5 (𝜑𝑇𝑆)
73, 4sstrd 3946 . . . . 5 (𝜑𝑆𝑋)
86, 7sstrd 3946 . . . 4 (𝜑𝑇𝑋)
91, 2, 8mrcidmd 17532 . . 3 (𝜑 → (𝑁‘(𝑁𝑇)) = (𝑁𝑇))
105, 9sseqtrd 3972 . 2 (𝜑 → (𝑁𝑆) ⊆ (𝑁𝑇))
111, 2, 6, 7mrcssd 17530 . 2 (𝜑 → (𝑁𝑇) ⊆ (𝑁𝑆))
1210, 11eqssd 3953 1 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3903  cfv 6482  Moorecmre 17484  mrClscmrc 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-mre 17488  df-mrc 17489
This theorem is referenced by:  mrieqvlemd  17535  mrissmrcd  17546
  Copyright terms: Public domain W3C validator