|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nrex1 | Structured version Visualization version GIF version | ||
| Description: The class of signed reals is a set. Note that a shorter proof is possible using qsex 8816 (and not requiring enrer 11103), but it would add a dependency on ax-rep 5279. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 11187. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nrex1 | ⊢ R ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nr 11096 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 2 | npex 11026 | . . . . 5 ⊢ P ∈ V | |
| 3 | 2, 2 | xpex 7773 | . . . 4 ⊢ (P × P) ∈ V | 
| 4 | 3 | pwex 5380 | . . 3 ⊢ 𝒫 (P × P) ∈ V | 
| 5 | enrer 11103 | . . . . . 6 ⊢ ~R Er (P × P) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ~R Er (P × P)) | 
| 7 | 6 | qsss 8818 | . . . 4 ⊢ (⊤ → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) | 
| 8 | 7 | mptru 1547 | . . 3 ⊢ ((P × P) / ~R ) ⊆ 𝒫 (P × P) | 
| 9 | 4, 8 | ssexi 5322 | . 2 ⊢ ((P × P) / ~R ) ∈ V | 
| 10 | 1, 9 | eqeltri 2837 | 1 ⊢ R ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ⊤wtru 1541 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 𝒫 cpw 4600 × cxp 5683 Er wer 8742 / cqs 8744 Pcnp 10899 ~R cer 10904 Rcnr 10905 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-ec 8747 df-qs 8751 df-ni 10912 df-pli 10913 df-mi 10914 df-lti 10915 df-plpq 10948 df-mpq 10949 df-ltpq 10950 df-enq 10951 df-nq 10952 df-erq 10953 df-plq 10954 df-mq 10955 df-1nq 10956 df-rq 10957 df-ltnq 10958 df-np 11021 df-plp 11023 df-ltp 11025 df-enr 11095 df-nr 11096 | 
| This theorem is referenced by: axcnex 11187 bj-inftyexpitaudisj 37206 | 
| Copyright terms: Public domain | W3C validator |