| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex1 | Structured version Visualization version GIF version | ||
| Description: The class of signed reals is a set. Note that a shorter proof is possible using qsex 8749 (and not requiring enrer 11023), but it would add a dependency on ax-rep 5237. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 11107. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nrex1 | ⊢ R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 11016 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 2 | npex 10946 | . . . . 5 ⊢ P ∈ V | |
| 3 | 2, 2 | xpex 7732 | . . . 4 ⊢ (P × P) ∈ V |
| 4 | 3 | pwex 5338 | . . 3 ⊢ 𝒫 (P × P) ∈ V |
| 5 | enrer 11023 | . . . . . 6 ⊢ ~R Er (P × P) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ~R Er (P × P)) |
| 7 | 6 | qsss 8752 | . . . 4 ⊢ (⊤ → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 8 | 7 | mptru 1547 | . . 3 ⊢ ((P × P) / ~R ) ⊆ 𝒫 (P × P) |
| 9 | 4, 8 | ssexi 5280 | . 2 ⊢ ((P × P) / ~R ) ∈ V |
| 10 | 1, 9 | eqeltri 2825 | 1 ⊢ R ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 × cxp 5639 Er wer 8671 / cqs 8673 Pcnp 10819 ~R cer 10824 Rcnr 10825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 df-plp 10943 df-ltp 10945 df-enr 11015 df-nr 11016 |
| This theorem is referenced by: axcnex 11107 bj-inftyexpitaudisj 37200 |
| Copyright terms: Public domain | W3C validator |