| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex1 | Structured version Visualization version GIF version | ||
| Description: The class of signed reals is a set. Note that a shorter proof is possible using qsex 8746 (and not requiring enrer 11016), but it would add a dependency on ax-rep 5234. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 11100. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nrex1 | ⊢ R ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 11009 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 2 | npex 10939 | . . . . 5 ⊢ P ∈ V | |
| 3 | 2, 2 | xpex 7729 | . . . 4 ⊢ (P × P) ∈ V |
| 4 | 3 | pwex 5335 | . . 3 ⊢ 𝒫 (P × P) ∈ V |
| 5 | enrer 11016 | . . . . . 6 ⊢ ~R Er (P × P) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ~R Er (P × P)) |
| 7 | 6 | qsss 8749 | . . . 4 ⊢ (⊤ → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
| 8 | 7 | mptru 1547 | . . 3 ⊢ ((P × P) / ~R ) ⊆ 𝒫 (P × P) |
| 9 | 4, 8 | ssexi 5277 | . 2 ⊢ ((P × P) / ~R ) ∈ V |
| 10 | 1, 9 | eqeltri 2824 | 1 ⊢ R ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 × cxp 5636 Er wer 8668 / cqs 8670 Pcnp 10812 ~R cer 10817 Rcnr 10818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-ec 8673 df-qs 8677 df-ni 10825 df-pli 10826 df-mi 10827 df-lti 10828 df-plpq 10861 df-mpq 10862 df-ltpq 10863 df-enq 10864 df-nq 10865 df-erq 10866 df-plq 10867 df-mq 10868 df-1nq 10869 df-rq 10870 df-ltnq 10871 df-np 10934 df-plp 10936 df-ltp 10938 df-enr 11008 df-nr 11009 |
| This theorem is referenced by: axcnex 11100 bj-inftyexpitaudisj 37193 |
| Copyright terms: Public domain | W3C validator |