![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrex1 | Structured version Visualization version GIF version |
Description: The class of signed reals is a set. Note that a shorter proof is possible using qsex 8774 (and not requiring enrer 11062), but it would add a dependency on ax-rep 5286. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 11146. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nrex1 | ⊢ R ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nr 11055 | . 2 ⊢ R = ((P × P) / ~R ) | |
2 | npex 10985 | . . . . 5 ⊢ P ∈ V | |
3 | 2, 2 | xpex 7744 | . . . 4 ⊢ (P × P) ∈ V |
4 | 3 | pwex 5379 | . . 3 ⊢ 𝒫 (P × P) ∈ V |
5 | enrer 11062 | . . . . . 6 ⊢ ~R Er (P × P) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → ~R Er (P × P)) |
7 | 6 | qsss 8776 | . . . 4 ⊢ (⊤ → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
8 | 7 | mptru 1546 | . . 3 ⊢ ((P × P) / ~R ) ⊆ 𝒫 (P × P) |
9 | 4, 8 | ssexi 5323 | . 2 ⊢ ((P × P) / ~R ) ∈ V |
10 | 1, 9 | eqeltri 2827 | 1 ⊢ R ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3949 𝒫 cpw 4603 × cxp 5675 Er wer 8704 / cqs 8706 Pcnp 10858 ~R cer 10863 Rcnr 10864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-ec 8709 df-qs 8713 df-ni 10871 df-pli 10872 df-mi 10873 df-lti 10874 df-plpq 10907 df-mpq 10908 df-ltpq 10909 df-enq 10910 df-nq 10911 df-erq 10912 df-plq 10913 df-mq 10914 df-1nq 10915 df-rq 10916 df-ltnq 10917 df-np 10980 df-plp 10982 df-ltp 10984 df-enr 11054 df-nr 11055 |
This theorem is referenced by: axcnex 11146 bj-inftyexpitaudisj 36391 |
Copyright terms: Public domain | W3C validator |