MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrex1 Structured version   Visualization version   GIF version

Theorem nrex1 10993
Description: The class of signed reals is a set. Note that a shorter proof is possible using qsex 8723 (and not requiring enrer 10992), but it would add a dependency on ax-rep 5229. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 11076. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nrex1 R ∈ V

Proof of Theorem nrex1
StepHypRef Expression
1 df-nr 10985 . 2 R = ((P × P) / ~R )
2 npex 10915 . . . . 5 P ∈ V
32, 2xpex 7709 . . . 4 (P × P) ∈ V
43pwex 5330 . . 3 𝒫 (P × P) ∈ V
5 enrer 10992 . . . . . 6 ~R Er (P × P)
65a1i 11 . . . . 5 (⊤ → ~R Er (P × P))
76qsss 8726 . . . 4 (⊤ → ((P × P) / ~R ) ⊆ 𝒫 (P × P))
87mptru 1547 . . 3 ((P × P) / ~R ) ⊆ 𝒫 (P × P)
94, 8ssexi 5272 . 2 ((P × P) / ~R ) ∈ V
101, 9eqeltri 2824 1 R ∈ V
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wcel 2109  Vcvv 3444  wss 3911  𝒫 cpw 4559   × cxp 5629   Er wer 8645   / cqs 8647  Pcnp 10788   ~R cer 10793  Rcnr 10794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847  df-np 10910  df-plp 10912  df-ltp 10914  df-enr 10984  df-nr 10985
This theorem is referenced by:  axcnex  11076  bj-inftyexpitaudisj  37166
  Copyright terms: Public domain W3C validator