Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cldopn | Structured version Visualization version GIF version |
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldopn | ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22158 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld 22159 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
4 | 3 | simplbda 499 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
5 | 1, 4 | mpancom 684 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 ⊆ wss 3891 ∪ cuni 4844 ‘cfv 6430 Topctop 22023 Clsdccld 22148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 df-top 22024 df-cld 22151 |
This theorem is referenced by: difopn 22166 iincld 22171 uncld 22173 iuncld 22177 clsval2 22182 opncldf1 22216 opncldf3 22218 restcld 22304 lecldbas 22351 cnclima 22400 nrmsep2 22488 nrmsep 22489 regsep2 22508 cmpcld 22534 dfconn2 22551 txcld 22735 ptcld 22745 kqcldsat 22865 regr1lem 22871 filconn 23015 cldsubg 23243 limcnlp 25023 dvrec 25100 dvexp3 25123 lhop1lem 25158 abelth 25581 logdmopn 25785 lgamucov 26168 onsucconni 34605 onint1 34617 pibt2 35567 mblfinlem3 35795 mblfinlem4 35796 ismblfin 35797 dvtanlem 35805 dvasin 35840 dvacos 35841 dvreasin 35842 dvreacos 35843 fourierdlem62 43663 opncldeqv 46147 iscnrm3rlem5 46190 |
Copyright terms: Public domain | W3C validator |