MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldopn Structured version   Visualization version   GIF version

Theorem cldopn 22935
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldopn (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)

Proof of Theorem cldopn
StepHypRef Expression
1 cldrcl 22930 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22931 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simplbda 499 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋𝑆) ∈ 𝐽)
51, 4mpancom 688 1 (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3902  wss 3905   cuni 4861  cfv 6486  Topctop 22797  Clsdccld 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-top 22798  df-cld 22923
This theorem is referenced by:  difopn  22938  iincld  22943  uncld  22945  iuncld  22949  clsval2  22954  opncldf1  22988  opncldf3  22990  restcld  23076  lecldbas  23123  cnclima  23172  nrmsep2  23260  nrmsep  23261  regsep2  23280  cmpcld  23306  dfconn2  23323  txcld  23507  ptcld  23517  kqcldsat  23637  regr1lem  23643  filconn  23787  cldsubg  24015  cnn0opn  24692  limcnlp  25796  lhop1lem  25935  abelth  26368  logdmopn  26575  lgamucov  26965  onsucconni  36430  onint1  36442  pibt2  37410  mblfinlem3  37658  mblfinlem4  37659  ismblfin  37660  dvasin  37703  dvacos  37704  dvreasin  37705  dvreacos  37706  readvrec2  42354  fourierdlem62  46169  opncldeqv  48906  iscnrm3rlem5  48948
  Copyright terms: Public domain W3C validator