| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldopn | Structured version Visualization version GIF version | ||
| Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldopn | ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22889 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld 22890 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| 4 | 3 | simplbda 499 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 ∪ cuni 4867 ‘cfv 6499 Topctop 22756 Clsdccld 22879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-top 22757 df-cld 22882 |
| This theorem is referenced by: difopn 22897 iincld 22902 uncld 22904 iuncld 22908 clsval2 22913 opncldf1 22947 opncldf3 22949 restcld 23035 lecldbas 23082 cnclima 23131 nrmsep2 23219 nrmsep 23220 regsep2 23239 cmpcld 23265 dfconn2 23282 txcld 23466 ptcld 23476 kqcldsat 23596 regr1lem 23602 filconn 23746 cldsubg 23974 cnn0opn 24651 limcnlp 25755 lhop1lem 25894 abelth 26327 logdmopn 26534 lgamucov 26924 onsucconni 36398 onint1 36410 pibt2 37378 mblfinlem3 37626 mblfinlem4 37627 ismblfin 37628 dvasin 37671 dvacos 37672 dvreasin 37673 dvreacos 37674 readvrec2 42322 fourierdlem62 46139 opncldeqv 48863 iscnrm3rlem5 48905 |
| Copyright terms: Public domain | W3C validator |