MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldopn Structured version   Visualization version   GIF version

Theorem cldopn 22941
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldopn (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)

Proof of Theorem cldopn
StepHypRef Expression
1 cldrcl 22936 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22937 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simplbda 499 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋𝑆) ∈ 𝐽)
51, 4mpancom 688 1 (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  wss 3897   cuni 4854  cfv 6476  Topctop 22803  Clsdccld 22926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fn 6479  df-fv 6484  df-top 22804  df-cld 22929
This theorem is referenced by:  difopn  22944  iincld  22949  uncld  22951  iuncld  22955  clsval2  22960  opncldf1  22994  opncldf3  22996  restcld  23082  lecldbas  23129  cnclima  23178  nrmsep2  23266  nrmsep  23267  regsep2  23286  cmpcld  23312  dfconn2  23329  txcld  23513  ptcld  23523  kqcldsat  23643  regr1lem  23649  filconn  23793  cldsubg  24021  cnn0opn  24697  limcnlp  25801  lhop1lem  25940  abelth  26373  logdmopn  26580  lgamucov  26970  onsucconni  36471  onint1  36483  pibt2  37451  mblfinlem3  37699  mblfinlem4  37700  ismblfin  37701  dvasin  37744  dvacos  37745  dvreasin  37746  dvreacos  37747  readvrec2  42394  fourierdlem62  46206  opncldeqv  48933  iscnrm3rlem5  48975
  Copyright terms: Public domain W3C validator