| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldopn | Structured version Visualization version GIF version | ||
| Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldopn | ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22964 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld 22965 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| 4 | 3 | simplbda 499 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ⊆ wss 3926 ∪ cuni 4883 ‘cfv 6531 Topctop 22831 Clsdccld 22954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 df-top 22832 df-cld 22957 |
| This theorem is referenced by: difopn 22972 iincld 22977 uncld 22979 iuncld 22983 clsval2 22988 opncldf1 23022 opncldf3 23024 restcld 23110 lecldbas 23157 cnclima 23206 nrmsep2 23294 nrmsep 23295 regsep2 23314 cmpcld 23340 dfconn2 23357 txcld 23541 ptcld 23551 kqcldsat 23671 regr1lem 23677 filconn 23821 cldsubg 24049 cnn0opn 24726 limcnlp 25831 lhop1lem 25970 abelth 26403 logdmopn 26610 lgamucov 27000 onsucconni 36455 onint1 36467 pibt2 37435 mblfinlem3 37683 mblfinlem4 37684 ismblfin 37685 dvasin 37728 dvacos 37729 dvreasin 37730 dvreacos 37731 readvrec2 42404 fourierdlem62 46197 opncldeqv 48876 iscnrm3rlem5 48918 |
| Copyright terms: Public domain | W3C validator |