MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldopn Structured version   Visualization version   GIF version

Theorem cldopn 22163
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldopn (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)

Proof of Theorem cldopn
StepHypRef Expression
1 cldrcl 22158 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22159 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simplbda 499 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋𝑆) ∈ 𝐽)
51, 4mpancom 684 1 (𝑆 ∈ (Clsd‘𝐽) → (𝑋𝑆) ∈ 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cdif 3888  wss 3891   cuni 4844  cfv 6430  Topctop 22023  Clsdccld 22148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fn 6433  df-fv 6438  df-top 22024  df-cld 22151
This theorem is referenced by:  difopn  22166  iincld  22171  uncld  22173  iuncld  22177  clsval2  22182  opncldf1  22216  opncldf3  22218  restcld  22304  lecldbas  22351  cnclima  22400  nrmsep2  22488  nrmsep  22489  regsep2  22508  cmpcld  22534  dfconn2  22551  txcld  22735  ptcld  22745  kqcldsat  22865  regr1lem  22871  filconn  23015  cldsubg  23243  limcnlp  25023  dvrec  25100  dvexp3  25123  lhop1lem  25158  abelth  25581  logdmopn  25785  lgamucov  26168  onsucconni  34605  onint1  34617  pibt2  35567  mblfinlem3  35795  mblfinlem4  35796  ismblfin  35797  dvtanlem  35805  dvasin  35840  dvacos  35841  dvreasin  35842  dvreacos  35843  fourierdlem62  43663  opncldeqv  46147  iscnrm3rlem5  46190
  Copyright terms: Public domain W3C validator