| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldopn | Structured version Visualization version GIF version | ||
| Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldopn | ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22930 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld 22931 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| 4 | 3 | simplbda 499 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ⊆ wss 3905 ∪ cuni 4861 ‘cfv 6486 Topctop 22797 Clsdccld 22920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 df-top 22798 df-cld 22923 |
| This theorem is referenced by: difopn 22938 iincld 22943 uncld 22945 iuncld 22949 clsval2 22954 opncldf1 22988 opncldf3 22990 restcld 23076 lecldbas 23123 cnclima 23172 nrmsep2 23260 nrmsep 23261 regsep2 23280 cmpcld 23306 dfconn2 23323 txcld 23507 ptcld 23517 kqcldsat 23637 regr1lem 23643 filconn 23787 cldsubg 24015 cnn0opn 24692 limcnlp 25796 lhop1lem 25935 abelth 26368 logdmopn 26575 lgamucov 26965 onsucconni 36430 onint1 36442 pibt2 37410 mblfinlem3 37658 mblfinlem4 37659 ismblfin 37660 dvasin 37703 dvacos 37704 dvreasin 37705 dvreacos 37706 readvrec2 42354 fourierdlem62 46169 opncldeqv 48906 iscnrm3rlem5 48948 |
| Copyright terms: Public domain | W3C validator |