| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldopn | Structured version Visualization version GIF version | ||
| Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldopn | ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22936 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld 22937 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| 4 | 3 | simplbda 499 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑆) ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 ∪ cuni 4854 ‘cfv 6476 Topctop 22803 Clsdccld 22926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 df-top 22804 df-cld 22929 |
| This theorem is referenced by: difopn 22944 iincld 22949 uncld 22951 iuncld 22955 clsval2 22960 opncldf1 22994 opncldf3 22996 restcld 23082 lecldbas 23129 cnclima 23178 nrmsep2 23266 nrmsep 23267 regsep2 23286 cmpcld 23312 dfconn2 23329 txcld 23513 ptcld 23523 kqcldsat 23643 regr1lem 23649 filconn 23793 cldsubg 24021 cnn0opn 24697 limcnlp 25801 lhop1lem 25940 abelth 26373 logdmopn 26580 lgamucov 26970 onsucconni 36471 onint1 36483 pibt2 37451 mblfinlem3 37699 mblfinlem4 37700 ismblfin 37701 dvasin 37744 dvacos 37745 dvreasin 37746 dvreacos 37747 readvrec2 42394 fourierdlem62 46206 opncldeqv 48933 iscnrm3rlem5 48975 |
| Copyright terms: Public domain | W3C validator |