MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 22533
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 22530 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22531 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 500 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 687 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cdif 3946  wss 3949   cuni 4909  cfv 6544  Topctop 22395  Clsdccld 22520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fn 6547  df-fv 6552  df-top 22396  df-cld 22523
This theorem is referenced by:  cldss2  22534  iincld  22543  uncld  22545  cldcls  22546  iuncld  22549  clsval2  22554  clsss3  22563  clsss2  22576  opncldf1  22588  restcldr  22678  lmcld  22807  nrmsep2  22860  nrmsep  22861  isnrm2  22862  regsep2  22880  cmpcld  22906  dfconn2  22923  conncompclo  22939  cldllycmp  22999  txcld  23107  ptcld  23117  imasncld  23195  kqcldsat  23237  kqnrmlem1  23247  kqnrmlem2  23248  nrmhmph  23298  ufildr  23435  metnrmlem1a  24374  metnrmlem1  24375  metnrmlem2  24376  metnrmlem3  24377  cnheiborlem  24470  cmetss  24833  bcthlem5  24845  cldssbrsiga  33185  clsun  35213  cldregopn  35216  pibt2  36298  mblfinlem3  36527  mblfinlem4  36528  ismblfin  36529  cmpfiiin  41435  kelac1  41805  stoweidlem18  44734  stoweidlem57  44773  restcls2lem  47545
  Copyright terms: Public domain W3C validator