MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 22944
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 22941 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22942 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 498 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 688 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  wss 3897   cuni 4856  cfv 6481  Topctop 22808  Clsdccld 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-top 22809  df-cld 22934
This theorem is referenced by:  cldss2  22945  iincld  22954  uncld  22956  cldcls  22957  iuncld  22960  clsval2  22965  clsss3  22974  clsss2  22987  opncldf1  22999  restcldr  23089  lmcld  23218  nrmsep2  23271  nrmsep  23272  isnrm2  23273  regsep2  23291  cmpcld  23317  dfconn2  23334  conncompclo  23350  cldllycmp  23410  txcld  23518  ptcld  23528  imasncld  23606  kqcldsat  23648  kqnrmlem1  23658  kqnrmlem2  23659  nrmhmph  23709  ufildr  23846  metnrmlem1a  24774  metnrmlem1  24775  metnrmlem2  24776  metnrmlem3  24777  cnheiborlem  24880  cmetss  25243  bcthlem5  25255  cldssbrsiga  34200  clsun  36370  cldregopn  36373  pibt2  37459  mblfinlem3  37707  mblfinlem4  37708  ismblfin  37709  cmpfiiin  42738  kelac1  43104  stoweidlem18  46064  stoweidlem57  46103  restcls2lem  48952
  Copyright terms: Public domain W3C validator