MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 22949
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 22946 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22947 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 498 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 688 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3908  wss 3911   cuni 4867  cfv 6499  Topctop 22813  Clsdccld 22936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-top 22814  df-cld 22939
This theorem is referenced by:  cldss2  22950  iincld  22959  uncld  22961  cldcls  22962  iuncld  22965  clsval2  22970  clsss3  22979  clsss2  22992  opncldf1  23004  restcldr  23094  lmcld  23223  nrmsep2  23276  nrmsep  23277  isnrm2  23278  regsep2  23296  cmpcld  23322  dfconn2  23339  conncompclo  23355  cldllycmp  23415  txcld  23523  ptcld  23533  imasncld  23611  kqcldsat  23653  kqnrmlem1  23663  kqnrmlem2  23664  nrmhmph  23714  ufildr  23851  metnrmlem1a  24780  metnrmlem1  24781  metnrmlem2  24782  metnrmlem3  24783  cnheiborlem  24886  cmetss  25249  bcthlem5  25261  cldssbrsiga  34170  clsun  36309  cldregopn  36312  pibt2  37398  mblfinlem3  37646  mblfinlem4  37647  ismblfin  37648  cmpfiiin  42678  kelac1  43045  stoweidlem18  46009  stoweidlem57  46048  restcls2lem  48894
  Copyright terms: Public domain W3C validator