| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldss | Structured version Visualization version GIF version | ||
| Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldss | ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22946 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld 22947 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| 4 | 3 | simprbda 498 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 ∪ cuni 4867 ‘cfv 6499 Topctop 22813 Clsdccld 22936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 df-top 22814 df-cld 22939 |
| This theorem is referenced by: cldss2 22950 iincld 22959 uncld 22961 cldcls 22962 iuncld 22965 clsval2 22970 clsss3 22979 clsss2 22992 opncldf1 23004 restcldr 23094 lmcld 23223 nrmsep2 23276 nrmsep 23277 isnrm2 23278 regsep2 23296 cmpcld 23322 dfconn2 23339 conncompclo 23355 cldllycmp 23415 txcld 23523 ptcld 23533 imasncld 23611 kqcldsat 23653 kqnrmlem1 23663 kqnrmlem2 23664 nrmhmph 23714 ufildr 23851 metnrmlem1a 24780 metnrmlem1 24781 metnrmlem2 24782 metnrmlem3 24783 cnheiborlem 24886 cmetss 25249 bcthlem5 25261 cldssbrsiga 34170 clsun 36309 cldregopn 36312 pibt2 37398 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 cmpfiiin 42678 kelac1 43045 stoweidlem18 46009 stoweidlem57 46048 restcls2lem 48894 |
| Copyright terms: Public domain | W3C validator |