MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 22916
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 22913 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22914 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 498 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 688 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  wss 3914   cuni 4871  cfv 6511  Topctop 22780  Clsdccld 22903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-top 22781  df-cld 22906
This theorem is referenced by:  cldss2  22917  iincld  22926  uncld  22928  cldcls  22929  iuncld  22932  clsval2  22937  clsss3  22946  clsss2  22959  opncldf1  22971  restcldr  23061  lmcld  23190  nrmsep2  23243  nrmsep  23244  isnrm2  23245  regsep2  23263  cmpcld  23289  dfconn2  23306  conncompclo  23322  cldllycmp  23382  txcld  23490  ptcld  23500  imasncld  23578  kqcldsat  23620  kqnrmlem1  23630  kqnrmlem2  23631  nrmhmph  23681  ufildr  23818  metnrmlem1a  24747  metnrmlem1  24748  metnrmlem2  24749  metnrmlem3  24750  cnheiborlem  24853  cmetss  25216  bcthlem5  25228  cldssbrsiga  34177  clsun  36316  cldregopn  36319  pibt2  37405  mblfinlem3  37653  mblfinlem4  37654  ismblfin  37655  cmpfiiin  42685  kelac1  43052  stoweidlem18  46016  stoweidlem57  46055  restcls2lem  48901
  Copyright terms: Public domain W3C validator