Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cldss | Structured version Visualization version GIF version |
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldss | ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22186 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld 22187 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
4 | 3 | simprbda 499 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
5 | 1, 4 | mpancom 685 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∖ cdif 3885 ⊆ wss 3888 ∪ cuni 4840 ‘cfv 6437 Topctop 22051 Clsdccld 22176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fn 6440 df-fv 6445 df-top 22052 df-cld 22179 |
This theorem is referenced by: cldss2 22190 iincld 22199 uncld 22201 cldcls 22202 iuncld 22205 clsval2 22210 clsss3 22219 clsss2 22232 opncldf1 22244 restcldr 22334 lmcld 22463 nrmsep2 22516 nrmsep 22517 isnrm2 22518 regsep2 22536 cmpcld 22562 dfconn2 22579 conncompclo 22595 cldllycmp 22655 txcld 22763 ptcld 22773 imasncld 22851 kqcldsat 22893 kqnrmlem1 22903 kqnrmlem2 22904 nrmhmph 22954 ufildr 23091 metnrmlem1a 24030 metnrmlem1 24031 metnrmlem2 24032 metnrmlem3 24033 cnheiborlem 24126 cmetss 24489 bcthlem5 24501 cldssbrsiga 32164 clsun 34526 cldregopn 34529 pibt2 35597 mblfinlem3 35825 mblfinlem4 35826 ismblfin 35827 cmpfiiin 40526 kelac1 40895 stoweidlem18 43566 stoweidlem57 43605 restcls2lem 46217 |
Copyright terms: Public domain | W3C validator |