| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldss | Structured version Visualization version GIF version | ||
| Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldss | ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22920 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld 22921 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| 4 | 3 | simprbda 498 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 Clsdccld 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-top 22788 df-cld 22913 |
| This theorem is referenced by: cldss2 22924 iincld 22933 uncld 22935 cldcls 22936 iuncld 22939 clsval2 22944 clsss3 22953 clsss2 22966 opncldf1 22978 restcldr 23068 lmcld 23197 nrmsep2 23250 nrmsep 23251 isnrm2 23252 regsep2 23270 cmpcld 23296 dfconn2 23313 conncompclo 23329 cldllycmp 23389 txcld 23497 ptcld 23507 imasncld 23585 kqcldsat 23627 kqnrmlem1 23637 kqnrmlem2 23638 nrmhmph 23688 ufildr 23825 metnrmlem1a 24754 metnrmlem1 24755 metnrmlem2 24756 metnrmlem3 24757 cnheiborlem 24860 cmetss 25223 bcthlem5 25235 cldssbrsiga 34184 clsun 36323 cldregopn 36326 pibt2 37412 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 cmpfiiin 42692 kelac1 43059 stoweidlem18 46023 stoweidlem57 46062 restcls2lem 48905 |
| Copyright terms: Public domain | W3C validator |