Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cldss | Structured version Visualization version GIF version |
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldss | ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 22085 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld 22086 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
4 | 3 | simprbda 498 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
5 | 1, 4 | mpancom 684 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 Clsdccld 22075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-top 21951 df-cld 22078 |
This theorem is referenced by: cldss2 22089 iincld 22098 uncld 22100 cldcls 22101 iuncld 22104 clsval2 22109 clsss3 22118 clsss2 22131 opncldf1 22143 restcldr 22233 lmcld 22362 nrmsep2 22415 nrmsep 22416 isnrm2 22417 regsep2 22435 cmpcld 22461 dfconn2 22478 conncompclo 22494 cldllycmp 22554 txcld 22662 ptcld 22672 imasncld 22750 kqcldsat 22792 kqnrmlem1 22802 kqnrmlem2 22803 nrmhmph 22853 ufildr 22990 metnrmlem1a 23927 metnrmlem1 23928 metnrmlem2 23929 metnrmlem3 23930 cnheiborlem 24023 cmetss 24385 bcthlem5 24397 cldssbrsiga 32055 clsun 34444 cldregopn 34447 pibt2 35515 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 cmpfiiin 40435 kelac1 40804 stoweidlem18 43449 stoweidlem57 43488 restcls2lem 46094 |
Copyright terms: Public domain | W3C validator |