MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 22892
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 22889 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22890 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 498 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 688 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3908  wss 3911   cuni 4867  cfv 6499  Topctop 22756  Clsdccld 22879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-top 22757  df-cld 22882
This theorem is referenced by:  cldss2  22893  iincld  22902  uncld  22904  cldcls  22905  iuncld  22908  clsval2  22913  clsss3  22922  clsss2  22935  opncldf1  22947  restcldr  23037  lmcld  23166  nrmsep2  23219  nrmsep  23220  isnrm2  23221  regsep2  23239  cmpcld  23265  dfconn2  23282  conncompclo  23298  cldllycmp  23358  txcld  23466  ptcld  23476  imasncld  23554  kqcldsat  23596  kqnrmlem1  23606  kqnrmlem2  23607  nrmhmph  23657  ufildr  23794  metnrmlem1a  24723  metnrmlem1  24724  metnrmlem2  24725  metnrmlem3  24726  cnheiborlem  24829  cmetss  25192  bcthlem5  25204  cldssbrsiga  34150  clsun  36289  cldregopn  36292  pibt2  37378  mblfinlem3  37626  mblfinlem4  37627  ismblfin  37628  cmpfiiin  42658  kelac1  43025  stoweidlem18  45989  stoweidlem57  46028  restcls2lem  48874
  Copyright terms: Public domain W3C validator