![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldss | Structured version Visualization version GIF version |
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldss | ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 23055 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld 23056 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
4 | 3 | simprbda 498 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
5 | 1, 4 | mpancom 687 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-top 22921 df-cld 23048 |
This theorem is referenced by: cldss2 23059 iincld 23068 uncld 23070 cldcls 23071 iuncld 23074 clsval2 23079 clsss3 23088 clsss2 23101 opncldf1 23113 restcldr 23203 lmcld 23332 nrmsep2 23385 nrmsep 23386 isnrm2 23387 regsep2 23405 cmpcld 23431 dfconn2 23448 conncompclo 23464 cldllycmp 23524 txcld 23632 ptcld 23642 imasncld 23720 kqcldsat 23762 kqnrmlem1 23772 kqnrmlem2 23773 nrmhmph 23823 ufildr 23960 metnrmlem1a 24899 metnrmlem1 24900 metnrmlem2 24901 metnrmlem3 24902 cnheiborlem 25005 cmetss 25369 bcthlem5 25381 cldssbrsiga 34151 clsun 36294 cldregopn 36297 pibt2 37383 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 cmpfiiin 42653 kelac1 43020 stoweidlem18 45939 stoweidlem57 45978 restcls2lem 48592 |
Copyright terms: Public domain | W3C validator |