MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 22914
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 22911 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22912 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 498 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 688 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3900  wss 3903   cuni 4858  cfv 6482  Topctop 22778  Clsdccld 22901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490  df-top 22779  df-cld 22904
This theorem is referenced by:  cldss2  22915  iincld  22924  uncld  22926  cldcls  22927  iuncld  22930  clsval2  22935  clsss3  22944  clsss2  22957  opncldf1  22969  restcldr  23059  lmcld  23188  nrmsep2  23241  nrmsep  23242  isnrm2  23243  regsep2  23261  cmpcld  23287  dfconn2  23304  conncompclo  23320  cldllycmp  23380  txcld  23488  ptcld  23498  imasncld  23576  kqcldsat  23618  kqnrmlem1  23628  kqnrmlem2  23629  nrmhmph  23679  ufildr  23816  metnrmlem1a  24745  metnrmlem1  24746  metnrmlem2  24747  metnrmlem3  24748  cnheiborlem  24851  cmetss  25214  bcthlem5  25226  cldssbrsiga  34154  clsun  36302  cldregopn  36305  pibt2  37391  mblfinlem3  37639  mblfinlem4  37640  ismblfin  37641  cmpfiiin  42670  kelac1  43036  stoweidlem18  45999  stoweidlem57  46038  restcls2lem  48897
  Copyright terms: Public domain W3C validator