| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cldss | Structured version Visualization version GIF version | ||
| Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| cldss | ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl 22911 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
| 2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld 22912 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
| 4 | 3 | simprbda 498 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
| 5 | 1, 4 | mpancom 688 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ⊆ wss 3903 ∪ cuni 4858 ‘cfv 6482 Topctop 22778 Clsdccld 22901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 df-top 22779 df-cld 22904 |
| This theorem is referenced by: cldss2 22915 iincld 22924 uncld 22926 cldcls 22927 iuncld 22930 clsval2 22935 clsss3 22944 clsss2 22957 opncldf1 22969 restcldr 23059 lmcld 23188 nrmsep2 23241 nrmsep 23242 isnrm2 23243 regsep2 23261 cmpcld 23287 dfconn2 23304 conncompclo 23320 cldllycmp 23380 txcld 23488 ptcld 23498 imasncld 23576 kqcldsat 23618 kqnrmlem1 23628 kqnrmlem2 23629 nrmhmph 23679 ufildr 23816 metnrmlem1a 24745 metnrmlem1 24746 metnrmlem2 24747 metnrmlem3 24748 cnheiborlem 24851 cmetss 25214 bcthlem5 25226 cldssbrsiga 34154 clsun 36302 cldregopn 36305 pibt2 37391 mblfinlem3 37639 mblfinlem4 37640 ismblfin 37641 cmpfiiin 42670 kelac1 43036 stoweidlem18 45999 stoweidlem57 46038 restcls2lem 48897 |
| Copyright terms: Public domain | W3C validator |