MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 22088
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 22085 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 22086 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 498 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 684 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cdif 3880  wss 3883   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-top 21951  df-cld 22078
This theorem is referenced by:  cldss2  22089  iincld  22098  uncld  22100  cldcls  22101  iuncld  22104  clsval2  22109  clsss3  22118  clsss2  22131  opncldf1  22143  restcldr  22233  lmcld  22362  nrmsep2  22415  nrmsep  22416  isnrm2  22417  regsep2  22435  cmpcld  22461  dfconn2  22478  conncompclo  22494  cldllycmp  22554  txcld  22662  ptcld  22672  imasncld  22750  kqcldsat  22792  kqnrmlem1  22802  kqnrmlem2  22803  nrmhmph  22853  ufildr  22990  metnrmlem1a  23927  metnrmlem1  23928  metnrmlem2  23929  metnrmlem3  23930  cnheiborlem  24023  cmetss  24385  bcthlem5  24397  cldssbrsiga  32055  clsun  34444  cldregopn  34447  pibt2  35515  mblfinlem3  35743  mblfinlem4  35744  ismblfin  35745  cmpfiiin  40435  kelac1  40804  stoweidlem18  43449  stoweidlem57  43488  restcls2lem  46094
  Copyright terms: Public domain W3C validator