MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 23058
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 23055 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 23056 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 498 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 687 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cdif 3973  wss 3976   cuni 4931  cfv 6573  Topctop 22920  Clsdccld 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-top 22921  df-cld 23048
This theorem is referenced by:  cldss2  23059  iincld  23068  uncld  23070  cldcls  23071  iuncld  23074  clsval2  23079  clsss3  23088  clsss2  23101  opncldf1  23113  restcldr  23203  lmcld  23332  nrmsep2  23385  nrmsep  23386  isnrm2  23387  regsep2  23405  cmpcld  23431  dfconn2  23448  conncompclo  23464  cldllycmp  23524  txcld  23632  ptcld  23642  imasncld  23720  kqcldsat  23762  kqnrmlem1  23772  kqnrmlem2  23773  nrmhmph  23823  ufildr  23960  metnrmlem1a  24899  metnrmlem1  24900  metnrmlem2  24901  metnrmlem3  24902  cnheiborlem  25005  cmetss  25369  bcthlem5  25381  cldssbrsiga  34151  clsun  36294  cldregopn  36297  pibt2  37383  mblfinlem3  37619  mblfinlem4  37620  ismblfin  37621  cmpfiiin  42653  kelac1  43020  stoweidlem18  45939  stoweidlem57  45978  restcls2lem  48592
  Copyright terms: Public domain W3C validator