![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldss | Structured version Visualization version GIF version |
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldss | ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldrcl 21238 | . 2 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) | |
2 | iscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld 21239 | . . 3 ⊢ (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆 ⊆ 𝑋 ∧ (𝑋 ∖ 𝑆) ∈ 𝐽))) |
4 | 3 | simprbda 494 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆 ⊆ 𝑋) |
5 | 1, 4 | mpancom 678 | 1 ⊢ (𝑆 ∈ (Clsd‘𝐽) → 𝑆 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 ⊆ wss 3792 ∪ cuni 4671 ‘cfv 6135 Topctop 21105 Clsdccld 21228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fn 6138 df-fv 6143 df-top 21106 df-cld 21231 |
This theorem is referenced by: cldss2 21242 iincld 21251 uncld 21253 cldcls 21254 iuncld 21257 clsval2 21262 clsss3 21271 clsss2 21284 opncldf1 21296 restcldr 21386 lmcld 21515 nrmsep2 21568 nrmsep 21569 isnrm2 21570 regsep2 21588 cmpcld 21614 dfconn2 21631 conncompclo 21647 cldllycmp 21707 txcld 21815 ptcld 21825 imasncld 21903 kqcldsat 21945 kqnrmlem1 21955 kqnrmlem2 21956 nrmhmph 22006 ufildr 22143 metnrmlem1a 23069 metnrmlem1 23070 metnrmlem2 23071 metnrmlem3 23072 cnheiborlem 23161 cmetss 23522 bcthlem5 23534 cldssbrsiga 30848 clsun 32911 cldregopn 32914 mblfinlem3 34074 mblfinlem4 34075 ismblfin 34076 cmpfiiin 38220 kelac1 38592 stoweidlem18 41162 stoweidlem57 41201 |
Copyright terms: Public domain | W3C validator |