MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldss Structured version   Visualization version   GIF version

Theorem cldss 21241
Description: A closed set is a subset of the underlying set of a topology. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldss (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)

Proof of Theorem cldss
StepHypRef Expression
1 cldrcl 21238 . 2 (𝑆 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
2 iscld.1 . . . 4 𝑋 = 𝐽
32iscld 21239 . . 3 (𝐽 ∈ Top → (𝑆 ∈ (Clsd‘𝐽) ↔ (𝑆𝑋 ∧ (𝑋𝑆) ∈ 𝐽)))
43simprbda 494 . 2 ((𝐽 ∈ Top ∧ 𝑆 ∈ (Clsd‘𝐽)) → 𝑆𝑋)
51, 4mpancom 678 1 (𝑆 ∈ (Clsd‘𝐽) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  cdif 3789  wss 3792   cuni 4671  cfv 6135  Topctop 21105  Clsdccld 21228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fn 6138  df-fv 6143  df-top 21106  df-cld 21231
This theorem is referenced by:  cldss2  21242  iincld  21251  uncld  21253  cldcls  21254  iuncld  21257  clsval2  21262  clsss3  21271  clsss2  21284  opncldf1  21296  restcldr  21386  lmcld  21515  nrmsep2  21568  nrmsep  21569  isnrm2  21570  regsep2  21588  cmpcld  21614  dfconn2  21631  conncompclo  21647  cldllycmp  21707  txcld  21815  ptcld  21825  imasncld  21903  kqcldsat  21945  kqnrmlem1  21955  kqnrmlem2  21956  nrmhmph  22006  ufildr  22143  metnrmlem1a  23069  metnrmlem1  23070  metnrmlem2  23071  metnrmlem3  23072  cnheiborlem  23161  cmetss  23522  bcthlem5  23534  cldssbrsiga  30848  clsun  32911  cldregopn  32914  mblfinlem3  34074  mblfinlem4  34075  ismblfin  34076  cmpfiiin  38220  kelac1  38592  stoweidlem18  41162  stoweidlem57  41201
  Copyright terms: Public domain W3C validator