| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > occon3 | Structured version Visualization version GIF version | ||
| Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| occon3 | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ococss 31275 | . . . 4 ⊢ (𝐵 ⊆ ℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐵 ⊆ (⊥‘(⊥‘𝐵))) |
| 3 | ocss 31267 | . . . 4 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) ⊆ ℋ) | |
| 4 | occon 31269 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐵) ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴))) | |
| 5 | 3, 4 | sylan2 593 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴))) |
| 6 | sstr2 3937 | . . 3 ⊢ (𝐵 ⊆ (⊥‘(⊥‘𝐵)) → ((⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴) → 𝐵 ⊆ (⊥‘𝐴))) | |
| 7 | 2, 5, 6 | sylsyld 61 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝐴))) |
| 8 | ococss 31275 | . . . 4 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
| 10 | id 22 | . . . 4 ⊢ (𝐵 ⊆ ℋ → 𝐵 ⊆ ℋ) | |
| 11 | ocss 31267 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
| 12 | occon 31269 | . . . 4 ⊢ ((𝐵 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵))) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵))) |
| 14 | sstr2 3937 | . . 3 ⊢ (𝐴 ⊆ (⊥‘(⊥‘𝐴)) → ((⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵) → 𝐴 ⊆ (⊥‘𝐵))) | |
| 15 | 9, 13, 14 | sylsyld 61 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → 𝐴 ⊆ (⊥‘𝐵))) |
| 16 | 7, 15 | impbid 212 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊆ wss 3898 ‘cfv 6486 ℋchba 30901 ⊥cort 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-hilex 30981 ax-hfvadd 30982 ax-hv0cl 30985 ax-hfvmul 30987 ax-hvmul0 30992 ax-hfi 31061 ax-his1 31064 ax-his2 31065 ax-his3 31066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-cj 15008 df-re 15009 df-im 15010 df-sh 31189 df-oc 31234 |
| This theorem is referenced by: chsscon2i 31445 chsscon2 31484 |
| Copyright terms: Public domain | W3C validator |