![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > occon3 | Structured version Visualization version GIF version |
Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
occon3 | ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ococss 31051 | . . . 4 ⊢ (𝐵 ⊆ ℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵))) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐵 ⊆ (⊥‘(⊥‘𝐵))) |
3 | ocss 31043 | . . . 4 ⊢ (𝐵 ⊆ ℋ → (⊥‘𝐵) ⊆ ℋ) | |
4 | occon 31045 | . . . 4 ⊢ ((𝐴 ⊆ ℋ ∧ (⊥‘𝐵) ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴))) | |
5 | 3, 4 | sylan2 592 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴))) |
6 | sstr2 3984 | . . 3 ⊢ (𝐵 ⊆ (⊥‘(⊥‘𝐵)) → ((⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴) → 𝐵 ⊆ (⊥‘𝐴))) | |
7 | 2, 5, 6 | sylsyld 61 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝐴))) |
8 | ococss 31051 | . . . 4 ⊢ (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) |
10 | id 22 | . . . 4 ⊢ (𝐵 ⊆ ℋ → 𝐵 ⊆ ℋ) | |
11 | ocss 31043 | . . . 4 ⊢ (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ) | |
12 | occon 31045 | . . . 4 ⊢ ((𝐵 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵))) | |
13 | 10, 11, 12 | syl2anr 596 | . . 3 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵))) |
14 | sstr2 3984 | . . 3 ⊢ (𝐴 ⊆ (⊥‘(⊥‘𝐴)) → ((⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵) → 𝐴 ⊆ (⊥‘𝐵))) | |
15 | 9, 13, 14 | sylsyld 61 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → 𝐴 ⊆ (⊥‘𝐵))) |
16 | 7, 15 | impbid 211 | 1 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ⊆ wss 3943 ‘cfv 6536 ℋchba 30677 ⊥cort 30688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-hilex 30757 ax-hfvadd 30758 ax-hv0cl 30761 ax-hfvmul 30763 ax-hvmul0 30768 ax-hfi 30837 ax-his1 30840 ax-his2 30841 ax-his3 30842 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-2 12276 df-cj 15050 df-re 15051 df-im 15052 df-sh 30965 df-oc 31010 |
This theorem is referenced by: chsscon2i 31221 chsscon2 31260 |
Copyright terms: Public domain | W3C validator |