HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occon3 Structured version   Visualization version   GIF version

Theorem occon3 29560
Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
occon3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)))

Proof of Theorem occon3
StepHypRef Expression
1 ococss 29556 . . . 4 (𝐵 ⊆ ℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵)))
21adantl 481 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐵 ⊆ (⊥‘(⊥‘𝐵)))
3 ocss 29548 . . . 4 (𝐵 ⊆ ℋ → (⊥‘𝐵) ⊆ ℋ)
4 occon 29550 . . . 4 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐵) ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴)))
53, 4sylan2 592 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴)))
6 sstr2 3924 . . 3 (𝐵 ⊆ (⊥‘(⊥‘𝐵)) → ((⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴) → 𝐵 ⊆ (⊥‘𝐴)))
72, 5, 6sylsyld 61 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝐴)))
8 ococss 29556 . . . 4 (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
98adantr 480 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
10 id 22 . . . 4 (𝐵 ⊆ ℋ → 𝐵 ⊆ ℋ)
11 ocss 29548 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
12 occon 29550 . . . 4 ((𝐵 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵)))
1310, 11, 12syl2anr 596 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵)))
14 sstr2 3924 . . 3 (𝐴 ⊆ (⊥‘(⊥‘𝐴)) → ((⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵) → 𝐴 ⊆ (⊥‘𝐵)))
159, 13, 14sylsyld 61 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → 𝐴 ⊆ (⊥‘𝐵)))
167, 15impbid 211 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wss 3883  cfv 6418  chba 29182  cort 29193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hv0cl 29266  ax-hfvmul 29268  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-sh 29470  df-oc 29515
This theorem is referenced by:  chsscon2i  29726  chsscon2  29765
  Copyright terms: Public domain W3C validator