HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  occon3 Structured version   Visualization version   GIF version

Theorem occon3 31279
Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
occon3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)))

Proof of Theorem occon3
StepHypRef Expression
1 ococss 31275 . . . 4 (𝐵 ⊆ ℋ → 𝐵 ⊆ (⊥‘(⊥‘𝐵)))
21adantl 481 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐵 ⊆ (⊥‘(⊥‘𝐵)))
3 ocss 31267 . . . 4 (𝐵 ⊆ ℋ → (⊥‘𝐵) ⊆ ℋ)
4 occon 31269 . . . 4 ((𝐴 ⊆ ℋ ∧ (⊥‘𝐵) ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴)))
53, 4sylan2 593 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → (⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴)))
6 sstr2 3937 . . 3 (𝐵 ⊆ (⊥‘(⊥‘𝐵)) → ((⊥‘(⊥‘𝐵)) ⊆ (⊥‘𝐴) → 𝐵 ⊆ (⊥‘𝐴)))
72, 5, 6sylsyld 61 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝐴)))
8 ococss 31275 . . . 4 (𝐴 ⊆ ℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
98adantr 480 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → 𝐴 ⊆ (⊥‘(⊥‘𝐴)))
10 id 22 . . . 4 (𝐵 ⊆ ℋ → 𝐵 ⊆ ℋ)
11 ocss 31267 . . . 4 (𝐴 ⊆ ℋ → (⊥‘𝐴) ⊆ ℋ)
12 occon 31269 . . . 4 ((𝐵 ⊆ ℋ ∧ (⊥‘𝐴) ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵)))
1310, 11, 12syl2anr 597 . . 3 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → (⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵)))
14 sstr2 3937 . . 3 (𝐴 ⊆ (⊥‘(⊥‘𝐴)) → ((⊥‘(⊥‘𝐴)) ⊆ (⊥‘𝐵) → 𝐴 ⊆ (⊥‘𝐵)))
159, 13, 14sylsyld 61 . 2 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐵 ⊆ (⊥‘𝐴) → 𝐴 ⊆ (⊥‘𝐵)))
167, 15impbid 212 1 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wss 3898  cfv 6486  chba 30901  cort 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-hilex 30981  ax-hfvadd 30982  ax-hv0cl 30985  ax-hfvmul 30987  ax-hvmul0 30992  ax-hfi 31061  ax-his1 31064  ax-his2 31065  ax-his3 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-cj 15008  df-re 15009  df-im 15010  df-sh 31189  df-oc 31234
This theorem is referenced by:  chsscon2i  31445  chsscon2  31484
  Copyright terms: Public domain W3C validator