| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucrn | Structured version Visualization version GIF version | ||
| Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsucrn.f | ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| onsucrn | ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 = suc 𝑥) | |
| 2 | onsuc 7743 | . . . . . . . 8 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → suc 𝑥 ∈ On) |
| 4 | 1, 3 | eqeltrd 2831 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 ∈ On) |
| 5 | 4 | rexlimiva 3125 | . . . . 5 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 → 𝑎 ∈ On) |
| 6 | 5 | pm4.71ri 560 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥)) |
| 7 | suceq 6374 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏) | |
| 8 | 7 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑏 → (𝑎 = suc 𝑥 ↔ 𝑎 = suc 𝑏)) |
| 9 | 8 | cbvrexvw 3211 | . . . . 5 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ∃𝑏 ∈ On 𝑎 = suc 𝑏) |
| 10 | 9 | anbi2i 623 | . . . 4 ⊢ ((𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥) ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)) |
| 11 | 6, 10 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)) |
| 12 | 11 | abbii 2798 | . 2 ⊢ {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)} |
| 13 | onsucrn.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 14 | 13 | rnmpt 5896 | . 2 ⊢ ran 𝐹 = {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} |
| 15 | df-rab 3396 | . 2 ⊢ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)} | |
| 16 | 12, 14, 15 | 3eqtr4i 2764 | 1 ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {crab 3395 ↦ cmpt 5170 ran crn 5615 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-cnv 5622 df-dm 5624 df-rn 5625 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: onsucf1o 43375 |
| Copyright terms: Public domain | W3C validator |