Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucrn Structured version   Visualization version   GIF version

Theorem onsucrn 42487
Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Hypothesis
Ref Expression
onsucrn.f 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
onsucrn ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Distinct variable group:   𝑎,𝑏,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑎,𝑏)

Proof of Theorem onsucrn
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 = suc 𝑥)
2 onsuc 7803 . . . . . . . 8 (𝑥 ∈ On → suc 𝑥 ∈ On)
32adantr 480 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → suc 𝑥 ∈ On)
41, 3eqeltrd 2832 . . . . . 6 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 ∈ On)
54rexlimiva 3146 . . . . 5 (∃𝑥 ∈ On 𝑎 = suc 𝑥𝑎 ∈ On)
65pm4.71ri 560 . . . 4 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥))
7 suceq 6430 . . . . . . 7 (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏)
87eqeq2d 2742 . . . . . 6 (𝑥 = 𝑏 → (𝑎 = suc 𝑥𝑎 = suc 𝑏))
98cbvrexvw 3234 . . . . 5 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ∃𝑏 ∈ On 𝑎 = suc 𝑏)
109anbi2i 622 . . . 4 ((𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥) ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏))
116, 10bitri 275 . . 3 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏))
1211abbii 2801 . 2 {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)}
13 onsucrn.f . . 3 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
1413rnmpt 5954 . 2 ran 𝐹 = {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥}
15 df-rab 3432 . 2 {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)}
1612, 14, 153eqtr4i 2769 1 ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2105  {cab 2708  wrex 3069  {crab 3431  cmpt 5231  ran crn 5677  Oncon0 6364  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-cnv 5684  df-dm 5686  df-rn 5687  df-ord 6367  df-on 6368  df-suc 6370
This theorem is referenced by:  onsucf1o  42488
  Copyright terms: Public domain W3C validator