![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucrn | Structured version Visualization version GIF version |
Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
Ref | Expression |
---|---|
onsucrn.f | ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
onsucrn | ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 = suc 𝑥) | |
2 | onsuc 7803 | . . . . . . . 8 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → suc 𝑥 ∈ On) |
4 | 1, 3 | eqeltrd 2832 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 ∈ On) |
5 | 4 | rexlimiva 3146 | . . . . 5 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 → 𝑎 ∈ On) |
6 | 5 | pm4.71ri 560 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥)) |
7 | suceq 6430 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏) | |
8 | 7 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑏 → (𝑎 = suc 𝑥 ↔ 𝑎 = suc 𝑏)) |
9 | 8 | cbvrexvw 3234 | . . . . 5 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ∃𝑏 ∈ On 𝑎 = suc 𝑏) |
10 | 9 | anbi2i 622 | . . . 4 ⊢ ((𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥) ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)) |
11 | 6, 10 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)) |
12 | 11 | abbii 2801 | . 2 ⊢ {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)} |
13 | onsucrn.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) | |
14 | 13 | rnmpt 5954 | . 2 ⊢ ran 𝐹 = {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} |
15 | df-rab 3432 | . 2 ⊢ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)} | |
16 | 12, 14, 15 | 3eqtr4i 2769 | 1 ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 {cab 2708 ∃wrex 3069 {crab 3431 ↦ cmpt 5231 ran crn 5677 Oncon0 6364 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-cnv 5684 df-dm 5686 df-rn 5687 df-ord 6367 df-on 6368 df-suc 6370 |
This theorem is referenced by: onsucf1o 42488 |
Copyright terms: Public domain | W3C validator |