Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucrn Structured version   Visualization version   GIF version

Theorem onsucrn 43233
Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Hypothesis
Ref Expression
onsucrn.f 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
onsucrn ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Distinct variable group:   𝑎,𝑏,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑎,𝑏)

Proof of Theorem onsucrn
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 = suc 𝑥)
2 onsuc 7767 . . . . . . . 8 (𝑥 ∈ On → suc 𝑥 ∈ On)
32adantr 480 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → suc 𝑥 ∈ On)
41, 3eqeltrd 2828 . . . . . 6 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 ∈ On)
54rexlimiva 3126 . . . . 5 (∃𝑥 ∈ On 𝑎 = suc 𝑥𝑎 ∈ On)
65pm4.71ri 560 . . . 4 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥))
7 suceq 6388 . . . . . . 7 (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏)
87eqeq2d 2740 . . . . . 6 (𝑥 = 𝑏 → (𝑎 = suc 𝑥𝑎 = suc 𝑏))
98cbvrexvw 3214 . . . . 5 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ∃𝑏 ∈ On 𝑎 = suc 𝑏)
109anbi2i 623 . . . 4 ((𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥) ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏))
116, 10bitri 275 . . 3 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏))
1211abbii 2796 . 2 {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)}
13 onsucrn.f . . 3 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
1413rnmpt 5910 . 2 ran 𝐹 = {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥}
15 df-rab 3403 . 2 {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)}
1612, 14, 153eqtr4i 2762 1 ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3402  cmpt 5183  ran crn 5632  Oncon0 6320  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-cnv 5639  df-dm 5641  df-rn 5642  df-ord 6323  df-on 6324  df-suc 6326
This theorem is referenced by:  onsucf1o  43234
  Copyright terms: Public domain W3C validator