![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucrn | Structured version Visualization version GIF version |
Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
Ref | Expression |
---|---|
onsucrn.f | ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
onsucrn | ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 = suc 𝑥) | |
2 | onsuc 7847 | . . . . . . . 8 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
3 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → suc 𝑥 ∈ On) |
4 | 1, 3 | eqeltrd 2844 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 ∈ On) |
5 | 4 | rexlimiva 3153 | . . . . 5 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 → 𝑎 ∈ On) |
6 | 5 | pm4.71ri 560 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥)) |
7 | suceq 6461 | . . . . . . 7 ⊢ (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏) | |
8 | 7 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑥 = 𝑏 → (𝑎 = suc 𝑥 ↔ 𝑎 = suc 𝑏)) |
9 | 8 | cbvrexvw 3244 | . . . . 5 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ∃𝑏 ∈ On 𝑎 = suc 𝑏) |
10 | 9 | anbi2i 622 | . . . 4 ⊢ ((𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥) ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)) |
11 | 6, 10 | bitri 275 | . . 3 ⊢ (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)) |
12 | 11 | abbii 2812 | . 2 ⊢ {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)} |
13 | onsucrn.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) | |
14 | 13 | rnmpt 5980 | . 2 ⊢ ran 𝐹 = {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} |
15 | df-rab 3444 | . 2 ⊢ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)} | |
16 | 12, 14, 15 | 3eqtr4i 2778 | 1 ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 {crab 3443 ↦ cmpt 5249 ran crn 5701 Oncon0 6395 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-cnv 5708 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: onsucf1o 43234 |
Copyright terms: Public domain | W3C validator |