Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucrn Structured version   Visualization version   GIF version

Theorem onsucrn 43284
Description: The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.)
Hypothesis
Ref Expression
onsucrn.f 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
onsucrn ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Distinct variable group:   𝑎,𝑏,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑎,𝑏)

Proof of Theorem onsucrn
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 = suc 𝑥)
2 onsuc 7831 . . . . . . . 8 (𝑥 ∈ On → suc 𝑥 ∈ On)
32adantr 480 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → suc 𝑥 ∈ On)
41, 3eqeltrd 2841 . . . . . 6 ((𝑥 ∈ On ∧ 𝑎 = suc 𝑥) → 𝑎 ∈ On)
54rexlimiva 3147 . . . . 5 (∃𝑥 ∈ On 𝑎 = suc 𝑥𝑎 ∈ On)
65pm4.71ri 560 . . . 4 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥))
7 suceq 6450 . . . . . . 7 (𝑥 = 𝑏 → suc 𝑥 = suc 𝑏)
87eqeq2d 2748 . . . . . 6 (𝑥 = 𝑏 → (𝑎 = suc 𝑥𝑎 = suc 𝑏))
98cbvrexvw 3238 . . . . 5 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ ∃𝑏 ∈ On 𝑎 = suc 𝑏)
109anbi2i 623 . . . 4 ((𝑎 ∈ On ∧ ∃𝑥 ∈ On 𝑎 = suc 𝑥) ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏))
116, 10bitri 275 . . 3 (∃𝑥 ∈ On 𝑎 = suc 𝑥 ↔ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏))
1211abbii 2809 . 2 {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)}
13 onsucrn.f . . 3 𝐹 = (𝑥 ∈ On ↦ suc 𝑥)
1413rnmpt 5968 . 2 ran 𝐹 = {𝑎 ∣ ∃𝑥 ∈ On 𝑎 = suc 𝑥}
15 df-rab 3437 . 2 {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} = {𝑎 ∣ (𝑎 ∈ On ∧ ∃𝑏 ∈ On 𝑎 = suc 𝑏)}
1612, 14, 153eqtr4i 2775 1 ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  {crab 3436  cmpt 5225  ran crn 5686  Oncon0 6384  suc csuc 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-cnv 5693  df-dm 5695  df-rn 5696  df-ord 6387  df-on 6388  df-suc 6390
This theorem is referenced by:  onsucf1o  43285
  Copyright terms: Public domain W3C validator