MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnff Structured version   Visualization version   GIF version

Theorem dvnff 25858
Description: The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnff ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))

Proof of Theorem dvnff
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12780 . . 3 0 = (ℤ‘0)
2 0zd 12486 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 0 ∈ ℤ)
3 fvconst2g 7142 . . . . 5 ((𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {𝐹})‘𝑘) = 𝐹)
43adantll 714 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {𝐹})‘𝑘) = 𝐹)
5 dmexg 7837 . . . . . 6 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹 ∈ V)
65ad2antlr 727 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → dom 𝐹 ∈ V)
7 cnex 11093 . . . . . 6 ℂ ∈ V
87a1i 11 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → ℂ ∈ V)
9 elpm2g 8774 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
107, 9mpan 690 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
1110biimpa 476 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1211simpld 494 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹:dom 𝐹⟶ℂ)
1312adantr 480 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝐹:dom 𝐹⟶ℂ)
14 fpmg 8798 . . . . 5 ((dom 𝐹 ∈ V ∧ ℂ ∈ V ∧ 𝐹:dom 𝐹⟶ℂ) → 𝐹 ∈ (ℂ ↑pm dom 𝐹))
156, 8, 13, 14syl3anc 1373 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm dom 𝐹))
164, 15eqeltrd 2831 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {𝐹})‘𝑘) ∈ (ℂ ↑pm dom 𝐹))
17 vex 3440 . . . . . 6 𝑘 ∈ V
18 vex 3440 . . . . . 6 𝑛 ∈ V
1917, 18opco1i 8061 . . . . 5 (𝑘((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )𝑛) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘𝑘)
20 oveq2 7360 . . . . . . 7 (𝑥 = 𝑘 → (𝑆 D 𝑥) = (𝑆 D 𝑘))
21 eqid 2731 . . . . . . 7 (𝑥 ∈ V ↦ (𝑆 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
22 ovex 7385 . . . . . . 7 (𝑆 D 𝑘) ∈ V
2320, 21, 22fvmpt 6935 . . . . . 6 (𝑘 ∈ V → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘𝑘) = (𝑆 D 𝑘))
2423elv 3441 . . . . 5 ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘𝑘) = (𝑆 D 𝑘)
2519, 24eqtri 2754 . . . 4 (𝑘((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )𝑛) = (𝑆 D 𝑘)
267a1i 11 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → ℂ ∈ V)
275ad2antlr 727 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝐹 ∈ V)
28 dvfg 25840 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝑘):dom (𝑆 D 𝑘)⟶ℂ)
2928ad2antrr 726 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑆 D 𝑘):dom (𝑆 D 𝑘)⟶ℂ)
30 recnprss 25838 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3130ad2antrr 726 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → 𝑆 ⊆ ℂ)
32 simprl 770 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → 𝑘 ∈ (ℂ ↑pm dom 𝐹))
33 elpm2g 8774 . . . . . . . . . 10 ((ℂ ∈ V ∧ dom 𝐹 ∈ V) → (𝑘 ∈ (ℂ ↑pm dom 𝐹) ↔ (𝑘:dom 𝑘⟶ℂ ∧ dom 𝑘 ⊆ dom 𝐹)))
347, 27, 33sylancr 587 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑘 ∈ (ℂ ↑pm dom 𝐹) ↔ (𝑘:dom 𝑘⟶ℂ ∧ dom 𝑘 ⊆ dom 𝐹)))
3532, 34mpbid 232 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑘:dom 𝑘⟶ℂ ∧ dom 𝑘 ⊆ dom 𝐹))
3635simpld 494 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → 𝑘:dom 𝑘⟶ℂ)
3735simprd 495 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝑘 ⊆ dom 𝐹)
3811simprd 495 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
3938adantr 480 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝐹𝑆)
4037, 39sstrd 3940 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝑘𝑆)
4131, 36, 40dvbss 25835 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom (𝑆 D 𝑘) ⊆ dom 𝑘)
4241, 37sstrd 3940 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom (𝑆 D 𝑘) ⊆ dom 𝐹)
43 elpm2r 8775 . . . . 5 (((ℂ ∈ V ∧ dom 𝐹 ∈ V) ∧ ((𝑆 D 𝑘):dom (𝑆 D 𝑘)⟶ℂ ∧ dom (𝑆 D 𝑘) ⊆ dom 𝐹)) → (𝑆 D 𝑘) ∈ (ℂ ↑pm dom 𝐹))
4426, 27, 29, 42, 43syl22anc 838 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑆 D 𝑘) ∈ (ℂ ↑pm dom 𝐹))
4525, 44eqeltrid 2835 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑘((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )𝑛) ∈ (ℂ ↑pm dom 𝐹))
461, 2, 16, 45seqf 13936 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})):ℕ0⟶(ℂ ↑pm dom 𝐹))
4721dvnfval 25857 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
4830, 47sylan 580 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
4948feq1d 6639 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹) ↔ seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})):ℕ0⟶(ℂ ↑pm dom 𝐹)))
5046, 49mpbird 257 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  {csn 4575  {cpr 4577  cmpt 5174   × cxp 5617  dom cdm 5619  ccom 5623  wf 6483  cfv 6487  (class class class)co 7352  1st c1st 7925  pm cpm 8757  cc 11010  cr 11011  0cc0 11012  0cn0 12387  seqcseq 13914   D cdv 25797   D𝑛 cdvn 25798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-icc 13258  df-fz 13414  df-seq 13915  df-exp 13975  df-cj 15012  df-re 15013  df-im 15014  df-sqrt 15148  df-abs 15149  df-struct 17064  df-slot 17099  df-ndx 17111  df-base 17127  df-plusg 17180  df-mulr 17181  df-starv 17182  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-rest 17332  df-topn 17333  df-topgen 17353  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cnp 23149  df-haus 23236  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24241  df-ms 24242  df-limc 25800  df-dv 25801  df-dvn 25802
This theorem is referenced by:  dvnf  25862  dvnbss  25863  dvnadd  25864
  Copyright terms: Public domain W3C validator