MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnff Structured version   Visualization version   GIF version

Theorem dvnff 25877
Description: The iterated derivative is a function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnff ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))

Proof of Theorem dvnff
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 12894 . . 3 0 = (ℤ‘0)
2 0zd 12600 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 0 ∈ ℤ)
3 fvconst2g 7194 . . . . 5 ((𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {𝐹})‘𝑘) = 𝐹)
43adantll 714 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {𝐹})‘𝑘) = 𝐹)
5 dmexg 7897 . . . . . 6 (𝐹 ∈ (ℂ ↑pm 𝑆) → dom 𝐹 ∈ V)
65ad2antlr 727 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → dom 𝐹 ∈ V)
7 cnex 11210 . . . . . 6 ℂ ∈ V
87a1i 11 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → ℂ ∈ V)
9 elpm2g 8858 . . . . . . . . 9 ((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
107, 9mpan 690 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → (𝐹 ∈ (ℂ ↑pm 𝑆) ↔ (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆)))
1110biimpa 476 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
1211simpld 494 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → 𝐹:dom 𝐹⟶ℂ)
1312adantr 480 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝐹:dom 𝐹⟶ℂ)
14 fpmg 8882 . . . . 5 ((dom 𝐹 ∈ V ∧ ℂ ∈ V ∧ 𝐹:dom 𝐹⟶ℂ) → 𝐹 ∈ (ℂ ↑pm dom 𝐹))
156, 8, 13, 14syl3anc 1373 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → 𝐹 ∈ (ℂ ↑pm dom 𝐹))
164, 15eqeltrd 2834 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ 𝑘 ∈ ℕ0) → ((ℕ0 × {𝐹})‘𝑘) ∈ (ℂ ↑pm dom 𝐹))
17 vex 3463 . . . . . 6 𝑘 ∈ V
18 vex 3463 . . . . . 6 𝑛 ∈ V
1917, 18opco1i 8124 . . . . 5 (𝑘((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )𝑛) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘𝑘)
20 oveq2 7413 . . . . . . 7 (𝑥 = 𝑘 → (𝑆 D 𝑥) = (𝑆 D 𝑘))
21 eqid 2735 . . . . . . 7 (𝑥 ∈ V ↦ (𝑆 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
22 ovex 7438 . . . . . . 7 (𝑆 D 𝑘) ∈ V
2320, 21, 22fvmpt 6986 . . . . . 6 (𝑘 ∈ V → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘𝑘) = (𝑆 D 𝑘))
2423elv 3464 . . . . 5 ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘𝑘) = (𝑆 D 𝑘)
2519, 24eqtri 2758 . . . 4 (𝑘((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )𝑛) = (𝑆 D 𝑘)
267a1i 11 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → ℂ ∈ V)
275ad2antlr 727 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝐹 ∈ V)
28 dvfg 25859 . . . . . 6 (𝑆 ∈ {ℝ, ℂ} → (𝑆 D 𝑘):dom (𝑆 D 𝑘)⟶ℂ)
2928ad2antrr 726 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑆 D 𝑘):dom (𝑆 D 𝑘)⟶ℂ)
30 recnprss 25857 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
3130ad2antrr 726 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → 𝑆 ⊆ ℂ)
32 simprl 770 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → 𝑘 ∈ (ℂ ↑pm dom 𝐹))
33 elpm2g 8858 . . . . . . . . . 10 ((ℂ ∈ V ∧ dom 𝐹 ∈ V) → (𝑘 ∈ (ℂ ↑pm dom 𝐹) ↔ (𝑘:dom 𝑘⟶ℂ ∧ dom 𝑘 ⊆ dom 𝐹)))
347, 27, 33sylancr 587 . . . . . . . . 9 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑘 ∈ (ℂ ↑pm dom 𝐹) ↔ (𝑘:dom 𝑘⟶ℂ ∧ dom 𝑘 ⊆ dom 𝐹)))
3532, 34mpbid 232 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑘:dom 𝑘⟶ℂ ∧ dom 𝑘 ⊆ dom 𝐹))
3635simpld 494 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → 𝑘:dom 𝑘⟶ℂ)
3735simprd 495 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝑘 ⊆ dom 𝐹)
3811simprd 495 . . . . . . . . 9 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → dom 𝐹𝑆)
3938adantr 480 . . . . . . . 8 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝐹𝑆)
4037, 39sstrd 3969 . . . . . . 7 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom 𝑘𝑆)
4131, 36, 40dvbss 25854 . . . . . 6 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom (𝑆 D 𝑘) ⊆ dom 𝑘)
4241, 37sstrd 3969 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → dom (𝑆 D 𝑘) ⊆ dom 𝐹)
43 elpm2r 8859 . . . . 5 (((ℂ ∈ V ∧ dom 𝐹 ∈ V) ∧ ((𝑆 D 𝑘):dom (𝑆 D 𝑘)⟶ℂ ∧ dom (𝑆 D 𝑘) ⊆ dom 𝐹)) → (𝑆 D 𝑘) ∈ (ℂ ↑pm dom 𝐹))
4426, 27, 29, 42, 43syl22anc 838 . . . 4 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑆 D 𝑘) ∈ (ℂ ↑pm dom 𝐹))
4525, 44eqeltrid 2838 . . 3 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑘 ∈ (ℂ ↑pm dom 𝐹) ∧ 𝑛 ∈ (ℂ ↑pm dom 𝐹))) → (𝑘((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )𝑛) ∈ (ℂ ↑pm dom 𝐹))
461, 2, 16, 45seqf 14041 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})):ℕ0⟶(ℂ ↑pm dom 𝐹))
4721dvnfval 25876 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
4830, 47sylan 580 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
4948feq1d 6690 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → ((𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹) ↔ seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})):ℕ0⟶(ℂ ↑pm dom 𝐹)))
5046, 49mpbird 257 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹):ℕ0⟶(ℂ ↑pm dom 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  wss 3926  {csn 4601  {cpr 4603  cmpt 5201   × cxp 5652  dom cdm 5654  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  pm cpm 8841  cc 11127  cr 11128  0cc0 11129  0cn0 12501  seqcseq 14019   D cdv 25816   D𝑛 cdvn 25817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cnp 23166  df-haus 23253  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-limc 25819  df-dv 25820  df-dvn 25821
This theorem is referenced by:  dvnf  25881  dvnbss  25882  dvnadd  25883
  Copyright terms: Public domain W3C validator