![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > algrp1 | Structured version Visualization version GIF version |
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
Ref | Expression |
---|---|
algrp1 | ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ 𝑍) | |
2 | algrf.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 1, 2 | eleqtrdi 2843 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ (ℤ≥‘𝑀)) |
4 | seqp1 13985 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
6 | algrf.2 | . . 3 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
7 | 6 | fveq1i 6892 | . 2 ⊢ (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) |
8 | 6 | fveq1i 6892 | . . . 4 ⊢ (𝑅‘𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) |
9 | 8 | fveq2i 6894 | . . 3 ⊢ (𝐹‘(𝑅‘𝐾)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)) |
10 | fvex 6904 | . . . 4 ⊢ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) ∈ V | |
11 | fvex 6904 | . . . 4 ⊢ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ V | |
12 | 10, 11 | opco1i 8113 | . . 3 ⊢ ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)) |
13 | 9, 12 | eqtr4i 2763 | . 2 ⊢ (𝐹‘(𝑅‘𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) |
14 | 5, 7, 13 | 3eqtr4g 2797 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4628 × cxp 5674 ∘ ccom 5680 ⟶wf 6539 ‘cfv 6543 (class class class)co 7411 1st c1st 7975 1c1 11113 + caddc 11115 ℤcz 12562 ℤ≥cuz 12826 seqcseq 13970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-seq 13971 |
This theorem is referenced by: alginv 16516 algcvg 16517 algcvga 16520 algfx 16521 ovolicc2lem3 25260 ovolicc2lem4 25261 bfplem1 36993 bfplem2 36994 |
Copyright terms: Public domain | W3C validator |