MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algrp1 Structured version   Visualization version   GIF version

Theorem algrp1 16094
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrp1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))

Proof of Theorem algrp1
StepHypRef Expression
1 simpr 488 . . . 4 ((𝜑𝐾𝑍) → 𝐾𝑍)
2 algrf.1 . . . 4 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2841 . . 3 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
4 seqp1 13554 . . 3 (𝐾 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
53, 4syl 17 . 2 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
6 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
76fveq1i 6696 . 2 (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1))
86fveq1i 6696 . . . 4 (𝑅𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)
98fveq2i 6698 . . 3 (𝐹‘(𝑅𝐾)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾))
10 fvex 6708 . . . 4 (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) ∈ V
11 fvex 6708 . . . 4 ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ V
1210, 11algrflem 7870 . . 3 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾))
139, 12eqtr4i 2762 . 2 (𝐹‘(𝑅𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))
145, 7, 133eqtr4g 2796 1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {csn 4527   × cxp 5534  ccom 5540  wf 6354  cfv 6358  (class class class)co 7191  1st c1st 7737  1c1 10695   + caddc 10697  cz 12141  cuz 12403  seqcseq 13539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-seq 13540
This theorem is referenced by:  alginv  16095  algcvg  16096  algcvga  16099  algfx  16100  ovolicc2lem3  24370  ovolicc2lem4  24371  bfplem1  35666  bfplem2  35667
  Copyright terms: Public domain W3C validator