MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algrp1 Structured version   Visualization version   GIF version

Theorem algrp1 16593
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrp1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))

Proof of Theorem algrp1
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝐾𝑍) → 𝐾𝑍)
2 algrf.1 . . . 4 𝑍 = (ℤ𝑀)
31, 2eleqtrdi 2844 . . 3 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
4 seqp1 14034 . . 3 (𝐾 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
53, 4syl 17 . 2 ((𝜑𝐾𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))))
6 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
76fveq1i 6877 . 2 (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1))
86fveq1i 6877 . . . 4 (𝑅𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)
98fveq2i 6879 . . 3 (𝐹‘(𝑅𝐾)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾))
10 fvex 6889 . . . 4 (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) ∈ V
11 fvex 6889 . . . 4 ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ V
1210, 11opco1i 8124 . . 3 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾))
139, 12eqtr4i 2761 . 2 (𝐹‘(𝑅𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))
145, 7, 133eqtr4g 2795 1 ((𝜑𝐾𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601   × cxp 5652  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  1c1 11130   + caddc 11132  cz 12588  cuz 12852  seqcseq 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020
This theorem is referenced by:  alginv  16594  algcvg  16595  algcvga  16598  algfx  16599  ovolicc2lem3  25472  ovolicc2lem4  25473  bfplem1  37846  bfplem2  37847
  Copyright terms: Public domain W3C validator