![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > algrp1 | Structured version Visualization version GIF version |
Description: The value of the algorithm iterator 𝑅 at (𝐾 + 1). (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
Ref | Expression |
---|---|
algrp1 | ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ 𝑍) | |
2 | algrf.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 1, 2 | eleqtrdi 2848 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → 𝐾 ∈ (ℤ≥‘𝑀)) |
4 | seqp1 13875 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1)))) |
6 | algrf.2 | . . 3 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
7 | 6 | fveq1i 6840 | . 2 ⊢ (𝑅‘(𝐾 + 1)) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝐾 + 1)) |
8 | 6 | fveq1i 6840 | . . . 4 ⊢ (𝑅‘𝐾) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) |
9 | 8 | fveq2i 6842 | . . 3 ⊢ (𝐹‘(𝑅‘𝐾)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)) |
10 | fvex 6852 | . . . 4 ⊢ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾) ∈ V | |
11 | fvex 6852 | . . . 4 ⊢ ((𝑍 × {𝐴})‘(𝐾 + 1)) ∈ V | |
12 | 10, 11 | opco1i 8049 | . . 3 ⊢ ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)) |
13 | 9, 12 | eqtr4i 2768 | . 2 ⊢ (𝐹‘(𝑅‘𝐾)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝐾)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝐾 + 1))) |
14 | 5, 7, 13 | 3eqtr4g 2802 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ 𝑍) → (𝑅‘(𝐾 + 1)) = (𝐹‘(𝑅‘𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {csn 4584 × cxp 5629 ∘ ccom 5635 ⟶wf 6489 ‘cfv 6493 (class class class)co 7351 1st c1st 7911 1c1 11010 + caddc 11012 ℤcz 12457 ℤ≥cuz 12721 seqcseq 13860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-nn 12112 df-n0 12372 df-z 12458 df-uz 12722 df-seq 13861 |
This theorem is referenced by: alginv 16410 algcvg 16411 algcvga 16414 algfx 16415 ovolicc2lem3 24834 ovolicc2lem4 24835 bfplem1 36212 bfplem2 36213 |
Copyright terms: Public domain | W3C validator |