MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algrf Structured version   Visualization version   GIF version

Theorem algrf 16507
Description: An algorithm is a step function 𝐹:𝑆𝑆 on a state space 𝑆. An algorithm acts on an initial state 𝐴𝑆 by iteratively applying 𝐹 to give 𝐴, (𝐹𝐴), (𝐹‘(𝐹𝐴)) and so on. An algorithm is said to halt if a fixed point of 𝐹 is reached after a finite number of iterations.

The algorithm iterator 𝑅:ℕ0𝑆 "runs" the algorithm 𝐹 so that (𝑅𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴.

Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrf (𝜑𝑅:𝑍𝑆)

Proof of Theorem algrf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.1 . . 3 𝑍 = (ℤ𝑀)
2 algrf.3 . . 3 (𝜑𝑀 ∈ ℤ)
3 algrf.4 . . . . 5 (𝜑𝐴𝑆)
4 fvconst2g 7200 . . . . 5 ((𝐴𝑆𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
53, 4sylan 581 . . . 4 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
63adantr 482 . . . 4 ((𝜑𝑥𝑍) → 𝐴𝑆)
75, 6eqeltrd 2834 . . 3 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
8 vex 3479 . . . . 5 𝑥 ∈ V
9 vex 3479 . . . . 5 𝑦 ∈ V
108, 9opco1i 8108 . . . 4 (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹𝑥)
11 algrf.5 . . . . 5 (𝜑𝐹:𝑆𝑆)
12 simpl 484 . . . . 5 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
13 ffvelcdm 7081 . . . . 5 ((𝐹:𝑆𝑆𝑥𝑆) → (𝐹𝑥) ∈ 𝑆)
1411, 12, 13syl2an 597 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐹𝑥) ∈ 𝑆)
1510, 14eqeltrid 2838 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
161, 2, 7, 15seqf 13986 . 2 (𝜑 → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
17 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
1817feq1i 6706 . 2 (𝑅:𝑍𝑆 ↔ seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
1916, 18sylibr 233 1 (𝜑𝑅:𝑍𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {csn 4628   × cxp 5674  ccom 5680  wf 6537  cfv 6541  (class class class)co 7406  1st c1st 7970  cz 12555  cuz 12819  seqcseq 13963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-seq 13964
This theorem is referenced by:  alginv  16509  algcvg  16510  algcvga  16513  algfx  16514  eucalgcvga  16520  eucalg  16521  ovolicc2lem2  25027  ovolicc2lem3  25028  ovolicc2lem4  25029  bfplem1  36679  bfplem2  36680
  Copyright terms: Public domain W3C validator