MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algrf Structured version   Visualization version   GIF version

Theorem algrf 16607
Description: An algorithm is a step function 𝐹:𝑆𝑆 on a state space 𝑆. An algorithm acts on an initial state 𝐴𝑆 by iteratively applying 𝐹 to give 𝐴, (𝐹𝐴), (𝐹‘(𝐹𝐴)) and so on. An algorithm is said to halt if a fixed point of 𝐹 is reached after a finite number of iterations.

The algorithm iterator 𝑅:ℕ0𝑆 "runs" the algorithm 𝐹 so that (𝑅𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴.

Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
algrf.3 (𝜑𝑀 ∈ ℤ)
algrf.4 (𝜑𝐴𝑆)
algrf.5 (𝜑𝐹:𝑆𝑆)
Assertion
Ref Expression
algrf (𝜑𝑅:𝑍𝑆)

Proof of Theorem algrf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.1 . . 3 𝑍 = (ℤ𝑀)
2 algrf.3 . . 3 (𝜑𝑀 ∈ ℤ)
3 algrf.4 . . . . 5 (𝜑𝐴𝑆)
4 fvconst2g 7222 . . . . 5 ((𝐴𝑆𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
53, 4sylan 580 . . . 4 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴)
63adantr 480 . . . 4 ((𝜑𝑥𝑍) → 𝐴𝑆)
75, 6eqeltrd 2839 . . 3 ((𝜑𝑥𝑍) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆)
8 vex 3482 . . . . 5 𝑥 ∈ V
9 vex 3482 . . . . 5 𝑦 ∈ V
108, 9opco1i 8149 . . . 4 (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹𝑥)
11 algrf.5 . . . . 5 (𝜑𝐹:𝑆𝑆)
12 simpl 482 . . . . 5 ((𝑥𝑆𝑦𝑆) → 𝑥𝑆)
13 ffvelcdm 7101 . . . . 5 ((𝐹:𝑆𝑆𝑥𝑆) → (𝐹𝑥) ∈ 𝑆)
1411, 12, 13syl2an 596 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐹𝑥) ∈ 𝑆)
1510, 14eqeltrid 2843 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆)
161, 2, 7, 15seqf 14061 . 2 (𝜑 → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
17 algrf.2 . . 3 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
1817feq1i 6728 . 2 (𝑅:𝑍𝑆 ↔ seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍𝑆)
1916, 18sylibr 234 1 (𝜑𝑅:𝑍𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {csn 4631   × cxp 5687  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  1st c1st 8011  cz 12611  cuz 12876  seqcseq 14039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-seq 14040
This theorem is referenced by:  alginv  16609  algcvg  16610  algcvga  16613  algfx  16614  eucalgcvga  16620  eucalg  16621  ovolicc2lem2  25567  ovolicc2lem3  25568  ovolicc2lem4  25569  bfplem1  37809  bfplem2  37810
  Copyright terms: Public domain W3C validator