Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > algrf | Structured version Visualization version GIF version |
Description: An algorithm is a step
function 𝐹:𝑆⟶𝑆 on a state space 𝑆.
An algorithm acts on an initial state 𝐴 ∈ 𝑆 by iteratively applying
𝐹 to give 𝐴, (𝐹‘𝐴), (𝐹‘(𝐹‘𝐴)) and so
on. An algorithm is said to halt if a fixed point of 𝐹 is
reached
after a finite number of iterations.
The algorithm iterator 𝑅:ℕ0⟶𝑆 "runs" the algorithm 𝐹 so that (𝑅‘𝑘) is the state after 𝑘 iterations of 𝐹 on the initial state 𝐴. Domain and codomain of the algorithm iterator 𝑅. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
algrf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
algrf.2 | ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) |
algrf.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
algrf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
algrf.5 | ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) |
Ref | Expression |
---|---|
algrf | ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algrf.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | algrf.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | algrf.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
4 | fvconst2g 7071 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) | |
5 | 3, 4 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) = 𝐴) |
6 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑆) |
7 | 5, 6 | eqeltrd 2840 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑍 × {𝐴})‘𝑥) ∈ 𝑆) |
8 | vex 3434 | . . . . 5 ⊢ 𝑥 ∈ V | |
9 | vex 3434 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | 8, 9 | opco1i 7950 | . . . 4 ⊢ (𝑥(𝐹 ∘ 1st )𝑦) = (𝐹‘𝑥) |
11 | algrf.5 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑆⟶𝑆) | |
12 | simpl 482 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
13 | ffvelrn 6953 | . . . . 5 ⊢ ((𝐹:𝑆⟶𝑆 ∧ 𝑥 ∈ 𝑆) → (𝐹‘𝑥) ∈ 𝑆) | |
14 | 11, 12, 13 | syl2an 595 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐹‘𝑥) ∈ 𝑆) |
15 | 10, 14 | eqeltrid 2844 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝐹 ∘ 1st )𝑦) ∈ 𝑆) |
16 | 1, 2, 7, 15 | seqf 13725 | . 2 ⊢ (𝜑 → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍⟶𝑆) |
17 | algrf.2 | . . 3 ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) | |
18 | 17 | feq1i 6587 | . 2 ⊢ (𝑅:𝑍⟶𝑆 ↔ seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})):𝑍⟶𝑆) |
19 | 16, 18 | sylibr 233 | 1 ⊢ (𝜑 → 𝑅:𝑍⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {csn 4566 × cxp 5586 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 ℤcz 12302 ℤ≥cuz 12564 seqcseq 13702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-seq 13703 |
This theorem is referenced by: alginv 16261 algcvg 16262 algcvga 16265 algfx 16266 eucalgcvga 16272 eucalg 16273 ovolicc2lem2 24663 ovolicc2lem3 24664 ovolicc2lem4 24665 bfplem1 35959 bfplem2 35960 |
Copyright terms: Public domain | W3C validator |