MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1st Structured version   Visualization version   GIF version

Theorem seq1st 16608
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
Assertion
Ref Expression
seq1st ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))

Proof of Theorem seq1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . 2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
2 seqfn 14054 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
32adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
4 seqfn 14054 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
54adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
6 fveq2 6906 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀))
7 fveq2 6906 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
86, 7eqeq12d 2753 . . . . . . 7 (𝑦 = 𝑀 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
98imbi2d 340 . . . . . 6 (𝑦 = 𝑀 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))))
10 fveq2 6906 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
11 fveq2 6906 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
1210, 11eqeq12d 2753 . . . . . . 7 (𝑦 = 𝑥 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
1312imbi2d 340 . . . . . 6 (𝑦 = 𝑥 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
14 fveq2 6906 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)))
15 fveq2 6906 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))
1614, 15eqeq12d 2753 . . . . . . 7 (𝑦 = (𝑥 + 1) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
1716imbi2d 340 . . . . . 6 (𝑦 = (𝑥 + 1) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
18 seq1 14055 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
1918adantr 480 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
20 seq1 14055 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
2120adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
22 id 22 . . . . . . . . . . 11 (𝐴𝑉𝐴𝑉)
23 uzid 12893 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 algrf.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2523, 24eleqtrrdi 2852 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
26 fvconst2g 7222 . . . . . . . . . . 11 ((𝐴𝑉𝑀𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
2722, 25, 26syl2anr 597 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
28 fvsng 7200 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ({⟨𝑀, 𝐴⟩}‘𝑀) = 𝐴)
2927, 28eqtr4d 2780 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
3021, 29eqtr4d 2780 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
3119, 30eqtr4d 2780 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
3231ex 412 . . . . . 6 (𝑀 ∈ ℤ → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
33 fveq2 6906 . . . . . . . . 9 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
34 seqp1 14057 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))))
35 fvex 6919 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) ∈ V
36 fvex 6919 . . . . . . . . . . . . 13 ((𝑍 × {𝐴})‘(𝑥 + 1)) ∈ V
3735, 36opco1i 8150 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
3834, 37eqtrdi 2793 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)))
39 seqp1 14057 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))))
40 fvex 6919 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) ∈ V
41 fvex 6919 . . . . . . . . . . . . 13 ({⟨𝑀, 𝐴⟩}‘(𝑥 + 1)) ∈ V
4240, 41opco1i 8150 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
4339, 42eqtrdi 2793 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
4438, 43eqeq12d 2753 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4544adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4633, 45imbitrrid 246 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
4746expcom 413 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
4847a2d 29 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
499, 13, 17, 13, 32, 48uzind4 12948 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
5049impcom 407 . . . 4 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
5150adantll 714 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
523, 5, 51eqfnfvd 7054 . 2 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
531, 52eqtrid 2789 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4626  cop 4632   × cxp 5683  ccom 5689   Fn wfn 6556  cfv 6561  (class class class)co 7431  1st c1st 8012  1c1 11156   + caddc 11158  cz 12613  cuz 12878  seqcseq 14042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator