MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1st Structured version   Visualization version   GIF version

Theorem seq1st 16590
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
Assertion
Ref Expression
seq1st ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))

Proof of Theorem seq1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . 2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
2 seqfn 14031 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
32adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
4 seqfn 14031 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
54adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
6 fveq2 6876 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀))
7 fveq2 6876 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
86, 7eqeq12d 2751 . . . . . . 7 (𝑦 = 𝑀 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
98imbi2d 340 . . . . . 6 (𝑦 = 𝑀 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))))
10 fveq2 6876 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
11 fveq2 6876 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
1210, 11eqeq12d 2751 . . . . . . 7 (𝑦 = 𝑥 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
1312imbi2d 340 . . . . . 6 (𝑦 = 𝑥 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
14 fveq2 6876 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)))
15 fveq2 6876 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))
1614, 15eqeq12d 2751 . . . . . . 7 (𝑦 = (𝑥 + 1) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
1716imbi2d 340 . . . . . 6 (𝑦 = (𝑥 + 1) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
18 seq1 14032 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
1918adantr 480 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
20 seq1 14032 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
2120adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
22 id 22 . . . . . . . . . . 11 (𝐴𝑉𝐴𝑉)
23 uzid 12867 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 algrf.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2523, 24eleqtrrdi 2845 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
26 fvconst2g 7194 . . . . . . . . . . 11 ((𝐴𝑉𝑀𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
2722, 25, 26syl2anr 597 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
28 fvsng 7172 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ({⟨𝑀, 𝐴⟩}‘𝑀) = 𝐴)
2927, 28eqtr4d 2773 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
3021, 29eqtr4d 2773 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
3119, 30eqtr4d 2773 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
3231ex 412 . . . . . 6 (𝑀 ∈ ℤ → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
33 fveq2 6876 . . . . . . . . 9 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
34 seqp1 14034 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))))
35 fvex 6889 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) ∈ V
36 fvex 6889 . . . . . . . . . . . . 13 ((𝑍 × {𝐴})‘(𝑥 + 1)) ∈ V
3735, 36opco1i 8124 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
3834, 37eqtrdi 2786 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)))
39 seqp1 14034 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))))
40 fvex 6889 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) ∈ V
41 fvex 6889 . . . . . . . . . . . . 13 ({⟨𝑀, 𝐴⟩}‘(𝑥 + 1)) ∈ V
4240, 41opco1i 8124 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
4339, 42eqtrdi 2786 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
4438, 43eqeq12d 2751 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4544adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4633, 45imbitrrid 246 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
4746expcom 413 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
4847a2d 29 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
499, 13, 17, 13, 32, 48uzind4 12922 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
5049impcom 407 . . . 4 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
5150adantll 714 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
523, 5, 51eqfnfvd 7024 . 2 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
531, 52eqtrid 2782 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {csn 4601  cop 4607   × cxp 5652  ccom 5658   Fn wfn 6526  cfv 6531  (class class class)co 7405  1st c1st 7986  1c1 11130   + caddc 11132  cz 12588  cuz 12852  seqcseq 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator