MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1st Structured version   Visualization version   GIF version

Theorem seq1st 15905
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
Assertion
Ref Expression
seq1st ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))

Proof of Theorem seq1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . 2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
2 seqfn 13376 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
32adantr 484 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
4 seqfn 13376 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
54adantr 484 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
6 fveq2 6645 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀))
7 fveq2 6645 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
86, 7eqeq12d 2814 . . . . . . 7 (𝑦 = 𝑀 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
98imbi2d 344 . . . . . 6 (𝑦 = 𝑀 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))))
10 fveq2 6645 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
11 fveq2 6645 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
1210, 11eqeq12d 2814 . . . . . . 7 (𝑦 = 𝑥 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
1312imbi2d 344 . . . . . 6 (𝑦 = 𝑥 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
14 fveq2 6645 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)))
15 fveq2 6645 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))
1614, 15eqeq12d 2814 . . . . . . 7 (𝑦 = (𝑥 + 1) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
1716imbi2d 344 . . . . . 6 (𝑦 = (𝑥 + 1) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
18 seq1 13377 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
1918adantr 484 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
20 seq1 13377 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
2120adantr 484 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
22 id 22 . . . . . . . . . . 11 (𝐴𝑉𝐴𝑉)
23 uzid 12246 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 algrf.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2523, 24eleqtrrdi 2901 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
26 fvconst2g 6941 . . . . . . . . . . 11 ((𝐴𝑉𝑀𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
2722, 25, 26syl2anr 599 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
28 fvsng 6919 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ({⟨𝑀, 𝐴⟩}‘𝑀) = 𝐴)
2927, 28eqtr4d 2836 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
3021, 29eqtr4d 2836 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
3119, 30eqtr4d 2836 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
3231ex 416 . . . . . 6 (𝑀 ∈ ℤ → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
33 fveq2 6645 . . . . . . . . 9 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
34 seqp1 13379 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))))
35 fvex 6658 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) ∈ V
36 fvex 6658 . . . . . . . . . . . . 13 ((𝑍 × {𝐴})‘(𝑥 + 1)) ∈ V
3735, 36algrflem 7802 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
3834, 37eqtrdi 2849 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)))
39 seqp1 13379 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))))
40 fvex 6658 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) ∈ V
41 fvex 6658 . . . . . . . . . . . . 13 ({⟨𝑀, 𝐴⟩}‘(𝑥 + 1)) ∈ V
4240, 41algrflem 7802 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
4339, 42eqtrdi 2849 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
4438, 43eqeq12d 2814 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4544adantl 485 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4633, 45syl5ibr 249 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
4746expcom 417 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
4847a2d 29 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
499, 13, 17, 13, 32, 48uzind4 12294 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
5049impcom 411 . . . 4 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
5150adantll 713 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
523, 5, 51eqfnfvd 6782 . 2 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
531, 52syl5eq 2845 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {csn 4525  cop 4531   × cxp 5517  ccom 5523   Fn wfn 6319  cfv 6324  (class class class)co 7135  1st c1st 7669  1c1 10527   + caddc 10529  cz 11969  cuz 12231  seqcseq 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator