MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seq1st Structured version   Visualization version   GIF version

Theorem seq1st 16618
Description: A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
algrf.1 𝑍 = (ℤ𝑀)
algrf.2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
Assertion
Ref Expression
seq1st ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))

Proof of Theorem seq1st
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.2 . 2 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))
2 seqfn 14064 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
32adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) Fn (ℤ𝑀))
4 seqfn 14064 . . . 4 (𝑀 ∈ ℤ → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
54adantr 480 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}) Fn (ℤ𝑀))
6 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀))
7 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑀 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
86, 7eqeq12d 2756 . . . . . . 7 (𝑦 = 𝑀 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
98imbi2d 340 . . . . . 6 (𝑦 = 𝑀 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))))
10 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
11 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑥 → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
1210, 11eqeq12d 2756 . . . . . . 7 (𝑦 = 𝑥 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
1312imbi2d 340 . . . . . 6 (𝑦 = 𝑥 → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
14 fveq2 6920 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)))
15 fveq2 6920 . . . . . . . 8 (𝑦 = (𝑥 + 1) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))
1614, 15eqeq12d 2756 . . . . . . 7 (𝑦 = (𝑥 + 1) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦) ↔ (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
1716imbi2d 340 . . . . . 6 (𝑦 = (𝑥 + 1) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑦) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑦)) ↔ (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
18 seq1 14065 . . . . . . . . 9 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
1918adantr 480 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
20 seq1 14065 . . . . . . . . . 10 (𝑀 ∈ ℤ → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
2120adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
22 id 22 . . . . . . . . . . 11 (𝐴𝑉𝐴𝑉)
23 uzid 12918 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
24 algrf.1 . . . . . . . . . . . 12 𝑍 = (ℤ𝑀)
2523, 24eleqtrrdi 2855 . . . . . . . . . . 11 (𝑀 ∈ ℤ → 𝑀𝑍)
26 fvconst2g 7239 . . . . . . . . . . 11 ((𝐴𝑉𝑀𝑍) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
2722, 25, 26syl2anr 596 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = 𝐴)
28 fvsng 7214 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ({⟨𝑀, 𝐴⟩}‘𝑀) = 𝐴)
2927, 28eqtr4d 2783 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → ((𝑍 × {𝐴})‘𝑀) = ({⟨𝑀, 𝐴⟩}‘𝑀))
3021, 29eqtr4d 2783 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀) = ((𝑍 × {𝐴})‘𝑀))
3119, 30eqtr4d 2783 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀))
3231ex 412 . . . . . 6 (𝑀 ∈ ℤ → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑀) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑀)))
33 fveq2 6920 . . . . . . . . 9 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
34 seqp1 14067 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))))
35 fvex 6933 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) ∈ V
36 fvex 6933 . . . . . . . . . . . . 13 ((𝑍 × {𝐴})‘(𝑥 + 1)) ∈ V
3735, 36opco1i 8166 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)(𝐹 ∘ 1st )((𝑍 × {𝐴})‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥))
3834, 37eqtrdi 2796 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)))
39 seqp1 14067 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))))
40 fvex 6933 . . . . . . . . . . . . 13 (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) ∈ V
41 fvex 6933 . . . . . . . . . . . . 13 ({⟨𝑀, 𝐴⟩}‘(𝑥 + 1)) ∈ V
4240, 41opco1i 8166 . . . . . . . . . . . 12 ((seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)(𝐹 ∘ 1st )({⟨𝑀, 𝐴⟩}‘(𝑥 + 1))) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
4339, 42eqtrdi 2796 . . . . . . . . . . 11 (𝑥 ∈ (ℤ𝑀) → (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
4438, 43eqeq12d 2756 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝑀) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4544adantl 481 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)) ↔ (𝐹‘(seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥)) = (𝐹‘(seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))))
4633, 45imbitrrid 246 . . . . . . . 8 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1))))
4746expcom 413 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → ((seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
4847a2d 29 . . . . . 6 (𝑥 ∈ (ℤ𝑀) → ((𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘(𝑥 + 1)) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘(𝑥 + 1)))))
499, 13, 17, 13, 32, 48uzind4 12971 . . . . 5 (𝑥 ∈ (ℤ𝑀) → (𝐴𝑉 → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥)))
5049impcom 407 . . . 4 ((𝐴𝑉𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
5150adantll 713 . . 3 (((𝑀 ∈ ℤ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (ℤ𝑀)) → (seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴}))‘𝑥) = (seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩})‘𝑥))
523, 5, 51eqfnfvd 7067 . 2 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
531, 52eqtrid 2792 1 ((𝑀 ∈ ℤ ∧ 𝐴𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {⟨𝑀, 𝐴⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {csn 4648  cop 4654   × cxp 5698  ccom 5704   Fn wfn 6568  cfv 6573  (class class class)co 7448  1st c1st 8028  1c1 11185   + caddc 11187  cz 12639  cuz 12903  seqcseq 14052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator