MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnp1 Structured version   Visualization version   GIF version

Theorem dvnp1 24516
Description: Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnp1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))

Proof of Theorem dvnp1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1134 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 nn0uz 12274 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2923 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
4 seqp1 13378 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))))
6 fvex 6678 . . . 4 (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁) ∈ V
7 fvex 6678 . . . 4 ((ℕ0 × {𝐹})‘(𝑁 + 1)) ∈ V
86, 7algrflem 7813 . . 3 ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))
95, 8syl6eq 2872 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)))
10 eqid 2821 . . . . 5 (𝑥 ∈ V ↦ (𝑆 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
1110dvnfval 24513 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
12113adant3 1128 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
1312fveq1d 6667 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)))
14 fvex 6678 . . . 4 ((𝑆 D𝑛 𝐹)‘𝑁) ∈ V
15 oveq2 7158 . . . . 5 (𝑥 = ((𝑆 D𝑛 𝐹)‘𝑁) → (𝑆 D 𝑥) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))
16 ovex 7183 . . . . 5 (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) ∈ V
1715, 10, 16fvmpt 6763 . . . 4 (((𝑆 D𝑛 𝐹)‘𝑁) ∈ V → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))
1814, 17ax-mp 5 . . 3 ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))
1912fveq1d 6667 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))
2019fveq2d 6669 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)))
2118, 20syl5eqr 2870 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)))
229, 13, 213eqtr4d 2866 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495  wss 3936  {csn 4561  cmpt 5139   × cxp 5548  ccom 5554  cfv 6350  (class class class)co 7150  1st c1st 7681  pm cpm 8401  cc 10529  0cc0 10531  1c1 10532   + caddc 10534  0cn0 11891  cuz 12237  seqcseq 13363   D cdv 24455   D𝑛 cdvn 24456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-dvn 24460
This theorem is referenced by:  dvn1  24517  dvnadd  24520  dvnres  24522  cpnord  24526  dvnfre  24543  c1lip2  24589  dvnply2  24870  dvntaylp  24953  taylthlem1  24955  taylthlem2  24956  dvnmptdivc  42215  dvnmptconst  42218  dvnxpaek  42219  dvnmul  42220  etransclem2  42514
  Copyright terms: Public domain W3C validator