MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnp1 Structured version   Visualization version   GIF version

Theorem dvnp1 25825
Description: Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
dvnp1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))

Proof of Theorem dvnp1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
2 nn0uz 12777 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2838 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ‘0))
4 seqp1 13923 . . . 4 (𝑁 ∈ (ℤ‘0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))))
6 fvex 6835 . . . 4 (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁) ∈ V
7 fvex 6835 . . . 4 ((ℕ0 × {𝐹})‘(𝑁 + 1)) ∈ V
86, 7opco1i 8058 . . 3 ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))
95, 8eqtrdi 2780 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)))
10 eqid 2729 . . . . 5 (𝑥 ∈ V ↦ (𝑆 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥))
1110dvnfval 25822 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
12113adant3 1132 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹})))
1312fveq1d 6824 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)))
14 fvex 6835 . . . 4 ((𝑆 D𝑛 𝐹)‘𝑁) ∈ V
15 oveq2 7357 . . . . 5 (𝑥 = ((𝑆 D𝑛 𝐹)‘𝑁) → (𝑆 D 𝑥) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))
16 ovex 7382 . . . . 5 (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) ∈ V
1715, 10, 16fvmpt 6930 . . . 4 (((𝑆 D𝑛 𝐹)‘𝑁) ∈ V → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))
1814, 17ax-mp 5 . . 3 ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))
1912fveq1d 6824 . . . 4 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))
2019fveq2d 6826 . . 3 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)))
2118, 20eqtr3id 2778 . 2 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)))
229, 13, 213eqtr4d 2774 1 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3436  wss 3903  {csn 4577  cmpt 5173   × cxp 5617  ccom 5623  cfv 6482  (class class class)co 7349  1st c1st 7922  pm cpm 8754  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  0cn0 12384  cuz 12735  seqcseq 13908   D cdv 25762   D𝑛 cdvn 25763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-seq 13909  df-dvn 25767
This theorem is referenced by:  dvn1  25826  dvnadd  25829  dvnres  25831  cpnord  25835  dvnfre  25854  c1lip2  25901  dvnply2  26193  dvntaylp  26277  taylthlem1  26279  taylthlem2  26280  taylthlem2OLD  26281  dvnmptdivc  45919  dvnmptconst  45922  dvnxpaek  45923  dvnmul  45924  etransclem2  46217
  Copyright terms: Public domain W3C validator