Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvnp1 | Structured version Visualization version GIF version |
Description: Successor iterated derivative. (Contributed by Stefan O'Rear, 15-Nov-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
dvnp1 | ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
2 | nn0uz 12549 | . . . . 5 ⊢ ℕ0 = (ℤ≥‘0) | |
3 | 1, 2 | eleqtrdi 2849 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (ℤ≥‘0)) |
4 | seqp1 13664 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1)))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1)))) |
6 | fvex 6769 | . . . 4 ⊢ (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁) ∈ V | |
7 | fvex 6769 | . . . 4 ⊢ ((ℕ0 × {𝐹})‘(𝑁 + 1)) ∈ V | |
8 | 6, 7 | opco1i 7937 | . . 3 ⊢ ((seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st )((ℕ0 × {𝐹})‘(𝑁 + 1))) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)) |
9 | 5, 8 | eqtrdi 2795 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))) |
10 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (𝑆 D 𝑥)) = (𝑥 ∈ V ↦ (𝑆 D 𝑥)) | |
11 | 10 | dvnfval 24991 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))) |
12 | 11 | 3adant3 1130 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D𝑛 𝐹) = seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))) |
13 | 12 | fveq1d 6758 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘(𝑁 + 1))) |
14 | fvex 6769 | . . . 4 ⊢ ((𝑆 D𝑛 𝐹)‘𝑁) ∈ V | |
15 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = ((𝑆 D𝑛 𝐹)‘𝑁) → (𝑆 D 𝑥) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) | |
16 | ovex 7288 | . . . . 5 ⊢ (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) ∈ V | |
17 | 15, 10, 16 | fvmpt 6857 | . . . 4 ⊢ (((𝑆 D𝑛 𝐹)‘𝑁) ∈ V → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) |
18 | 14, 17 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) |
19 | 12 | fveq1d 6758 | . . . 4 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑁) = (seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁)) |
20 | 19 | fveq2d 6760 | . . 3 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))) |
21 | 18, 20 | eqtr3id 2793 | . 2 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁)) = ((𝑥 ∈ V ↦ (𝑆 D 𝑥))‘(seq0(((𝑥 ∈ V ↦ (𝑆 D 𝑥)) ∘ 1st ), (ℕ0 × {𝐹}))‘𝑁))) |
22 | 9, 13, 21 | 3eqtr4d 2788 | 1 ⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑁 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘(𝑁 + 1)) = (𝑆 D ((𝑆 D𝑛 𝐹)‘𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 ↑pm cpm 8574 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 ℕ0cn0 12163 ℤ≥cuz 12511 seqcseq 13649 D cdv 24932 D𝑛 cdvn 24933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-dvn 24937 |
This theorem is referenced by: dvn1 24995 dvnadd 24998 dvnres 25000 cpnord 25004 dvnfre 25021 c1lip2 25067 dvnply2 25352 dvntaylp 25435 taylthlem1 25437 taylthlem2 25438 dvnmptdivc 43369 dvnmptconst 43372 dvnxpaek 43373 dvnmul 43374 etransclem2 43667 |
Copyright terms: Public domain | W3C validator |