MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreuopb Structured version   Visualization version   GIF version

Theorem 2sqreuopb 27385
Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Alternate ordered pair variant of 2sqreunnltb 27378. (Contributed by AV, 3-Jul-2023.)
Assertion
Ref Expression
2sqreuopb (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))))
Distinct variable group:   𝑃,𝑎,𝑏,𝑝

Proof of Theorem 2sqreuopb
StepHypRef Expression
1 2sqreuopnnltb 27384 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃)))
2 breq12 5114 . . . 4 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝑎 < 𝑏 ↔ (1st𝑝) < (2nd𝑝)))
3 simpl 482 . . . . . . 7 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → 𝑎 = (1st𝑝))
43oveq1d 7404 . . . . . 6 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝑎↑2) = ((1st𝑝)↑2))
5 simpr 484 . . . . . . 7 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → 𝑏 = (2nd𝑝))
65oveq1d 7404 . . . . . 6 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝑏↑2) = ((2nd𝑝)↑2))
74, 6oveq12d 7407 . . . . 5 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → ((𝑎↑2) + (𝑏↑2)) = (((1st𝑝)↑2) + ((2nd𝑝)↑2)))
87eqeq1d 2732 . . . 4 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
92, 8anbi12d 632 . . 3 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃)))
109opreuopreu 8015 . 2 (∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
111, 10bitrdi 287 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!wreu 3354  cop 4597   class class class wbr 5109   × cxp 5638  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  1c1 11075   + caddc 11077   < clt 11214  cn 12187  2c2 12242  4c4 12244   mod cmo 13837  cexp 14032  cprime 16647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-ofr 7656  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-ec 8675  df-qs 8679  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-sup 9399  df-inf 9400  df-oi 9469  df-dju 9860  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-dvds 16229  df-gcd 16471  df-prm 16648  df-phi 16742  df-pc 16814  df-gz 16907  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17410  df-gsum 17411  df-prds 17416  df-pws 17418  df-imas 17477  df-qus 17478  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-subg 19061  df-nsg 19062  df-eqg 19063  df-ghm 19151  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-srg 20102  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-rhm 20387  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20774  df-lss 20844  df-lsp 20884  df-sra 21086  df-rgmod 21087  df-lidl 21124  df-rsp 21125  df-2idl 21166  df-cnfld 21271  df-zring 21363  df-zrh 21419  df-zn 21422  df-assa 21768  df-asp 21769  df-ascl 21770  df-psr 21824  df-mvr 21825  df-mpl 21826  df-opsr 21828  df-evls 21987  df-evl 21988  df-psr1 22070  df-vr1 22071  df-ply1 22072  df-coe1 22073  df-evl1 22209  df-mdeg 25966  df-deg1 25967  df-mon1 26042  df-uc1p 26043  df-q1p 26044  df-r1p 26045  df-lgs 27212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator