Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2sqreuopb | Structured version Visualization version GIF version |
Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Alternate ordered pair variant of 2sqreunnltb 26514. (Contributed by AV, 3-Jul-2023.) |
Ref | Expression |
---|---|
2sqreuopb | ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreuopnnltb 26520 | . 2 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) | |
2 | breq12 5075 | . . . 4 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑎 < 𝑏 ↔ (1st ‘𝑝) < (2nd ‘𝑝))) | |
3 | simpl 482 | . . . . . . 7 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑎 = (1st ‘𝑝)) | |
4 | 3 | oveq1d 7270 | . . . . . 6 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑎↑2) = ((1st ‘𝑝)↑2)) |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → 𝑏 = (2nd ‘𝑝)) | |
6 | 5 | oveq1d 7270 | . . . . . 6 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (𝑏↑2) = ((2nd ‘𝑝)↑2)) |
7 | 4, 6 | oveq12d 7273 | . . . . 5 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → ((𝑎↑2) + (𝑏↑2)) = (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2))) |
8 | 7 | eqeq1d 2740 | . . . 4 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃)) |
9 | 2, 8 | anbi12d 630 | . . 3 ⊢ ((𝑎 = (1st ‘𝑝) ∧ 𝑏 = (2nd ‘𝑝)) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃))) |
10 | 9 | opreuopreu 7849 | . 2 ⊢ (∃!𝑝 ∈ (ℕ × ℕ)((1st ‘𝑝) < (2nd ‘𝑝) ∧ (((1st ‘𝑝)↑2) + ((2nd ‘𝑝)↑2)) = 𝑃) ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))) |
11 | 1, 10 | bitrdi 286 | 1 ⊢ (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎∃𝑏(𝑝 = 〈𝑎, 𝑏〉 ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃!wreu 3065 〈cop 4564 class class class wbr 5070 × cxp 5578 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 1c1 10803 + caddc 10805 < clt 10940 ℕcn 11903 2c2 11958 4c4 11960 mod cmo 13517 ↑cexp 13710 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-phi 16395 df-pc 16466 df-gz 16559 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-imas 17136 df-qus 17137 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-nsg 18668 df-eqg 18669 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-field 19909 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-sra 20349 df-rgmod 20350 df-lidl 20351 df-rsp 20352 df-2idl 20416 df-nzr 20442 df-rlreg 20467 df-domn 20468 df-idom 20469 df-cnfld 20511 df-zring 20583 df-zrh 20617 df-zn 20620 df-assa 20970 df-asp 20971 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-opsr 21026 df-evls 21192 df-evl 21193 df-psr1 21261 df-vr1 21262 df-ply1 21263 df-coe1 21264 df-evl1 21392 df-mdeg 25122 df-deg1 25123 df-mon1 25200 df-uc1p 25201 df-q1p 25202 df-r1p 25203 df-lgs 26348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |