MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sqreuopb Structured version   Visualization version   GIF version

Theorem 2sqreuopb 26055
Description: There exists a unique decomposition of a prime as a sum of squares of two different positive integers iff the prime is of the form 4𝑘 + 1. Alternate ordered pair variant of 2sqreunnltb 26048. (Contributed by AV, 3-Jul-2023.)
Assertion
Ref Expression
2sqreuopb (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))))
Distinct variable group:   𝑃,𝑎,𝑏,𝑝

Proof of Theorem 2sqreuopb
StepHypRef Expression
1 2sqreuopnnltb 26054 . 2 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃)))
2 breq12 5038 . . . 4 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝑎 < 𝑏 ↔ (1st𝑝) < (2nd𝑝)))
3 simpl 486 . . . . . . 7 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → 𝑎 = (1st𝑝))
43oveq1d 7154 . . . . . 6 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝑎↑2) = ((1st𝑝)↑2))
5 simpr 488 . . . . . . 7 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → 𝑏 = (2nd𝑝))
65oveq1d 7154 . . . . . 6 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (𝑏↑2) = ((2nd𝑝)↑2))
74, 6oveq12d 7157 . . . . 5 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → ((𝑎↑2) + (𝑏↑2)) = (((1st𝑝)↑2) + ((2nd𝑝)↑2)))
87eqeq1d 2803 . . . 4 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → (((𝑎↑2) + (𝑏↑2)) = 𝑃 ↔ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃))
92, 8anbi12d 633 . . 3 ((𝑎 = (1st𝑝) ∧ 𝑏 = (2nd𝑝)) → ((𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃) ↔ ((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃)))
109opreuopreu 7720 . 2 (∃!𝑝 ∈ (ℕ × ℕ)((1st𝑝) < (2nd𝑝) ∧ (((1st𝑝)↑2) + ((2nd𝑝)↑2)) = 𝑃) ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃)))
111, 10syl6bb 290 1 (𝑃 ∈ ℙ → ((𝑃 mod 4) = 1 ↔ ∃!𝑝 ∈ (ℕ × ℕ)∃𝑎𝑏(𝑝 = ⟨𝑎, 𝑏⟩ ∧ (𝑎 < 𝑏 ∧ ((𝑎↑2) + (𝑏↑2)) = 𝑃))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2112  ∃!wreu 3111  cop 4534   class class class wbr 5033   × cxp 5521  cfv 6328  (class class class)co 7139  1st c1st 7673  2nd c2nd 7674  1c1 10531   + caddc 10533   < clt 10668  cn 11629  2c2 11684  4c4 11686   mod cmo 13236  cexp 13429  cprime 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-hash 13691  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-dvds 15603  df-gcd 15837  df-prm 16009  df-phi 16096  df-pc 16167  df-gz 16259  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-imas 16776  df-qus 16777  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-nsg 18272  df-eqg 18273  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-srg 19252  df-ring 19295  df-cring 19296  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19500  df-field 19501  df-subrg 19529  df-lmod 19632  df-lss 19700  df-lsp 19740  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-rsp 19943  df-2idl 20001  df-nzr 20027  df-rlreg 20052  df-domn 20053  df-idom 20054  df-cnfld 20095  df-zring 20167  df-zrh 20200  df-zn 20203  df-assa 20545  df-asp 20546  df-ascl 20547  df-psr 20597  df-mvr 20598  df-mpl 20599  df-opsr 20601  df-evls 20748  df-evl 20749  df-psr1 20812  df-vr1 20813  df-ply1 20814  df-coe1 20815  df-evl1 20943  df-mdeg 24659  df-deg1 24660  df-mon1 24734  df-uc1p 24735  df-q1p 24736  df-r1p 24737  df-lgs 25882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator