MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logreclem Structured version   Visualization version   GIF version

Theorem logreclem 26697
Description: Symmetry of the natural logarithm range by negation. Lemma for logrec 26698. (Contributed by Saveliy Skresanov, 27-Dec-2016.)
Assertion
Ref Expression
logreclem ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)

Proof of Theorem logreclem
StepHypRef Expression
1 logrncn 26496 . . . . . . . . 9 (𝐴 ∈ ran log → 𝐴 ∈ ℂ)
21adantr 480 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → 𝐴 ∈ ℂ)
32negcld 11456 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ℂ)
4 ellogrn 26493 . . . . . . . . . . . . . 14 (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
54biimpi 216 . . . . . . . . . . . . 13 (𝐴 ∈ ran log → (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
65simp3d 1144 . . . . . . . . . . . 12 (𝐴 ∈ ran log → (ℑ‘𝐴) ≤ π)
7 imcl 15015 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
8 pire 26391 . . . . . . . . . . . . 13 π ∈ ℝ
9 leneg 11617 . . . . . . . . . . . . . 14 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π ↔ -π ≤ -(ℑ‘𝐴)))
109biimpd 229 . . . . . . . . . . . . 13 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
117, 8, 10sylancl 586 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
121, 6, 11sylc 65 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π ≤ -(ℑ‘𝐴))
138renegcli 11419 . . . . . . . . . . . . . 14 -π ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -π ∈ ℝ)
157renegcld 11541 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
1614, 15leloed 11253 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) ↔ (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
1716biimpd 229 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
181, 12, 17sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴)))
1918orcomd 871 . . . . . . . . 9 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -π < -(ℑ‘𝐴)))
2019orcanai 1004 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -π < -(ℑ‘𝐴))
215simp2d 1143 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π < (ℑ‘𝐴))
22 ltnegcon1 11615 . . . . . . . . . . . . 13 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) ↔ -(ℑ‘𝐴) < π))
2322biimpd 229 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
248, 7, 23sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
251, 21, 24sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → -(ℑ‘𝐴) < π)
2625adantr 480 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) < π)
27 ltle 11198 . . . . . . . . . . . 12 ((-(ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
2815, 8, 27sylancl 586 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
291, 28syl 17 . . . . . . . . . 10 (𝐴 ∈ ran log → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3029adantr 480 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3126, 30mpd 15 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ π)
32 imneg 15037 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
3332breq2d 5103 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
342, 33syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
3532breq1d 5101 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
362, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
3734, 36anbi12d 632 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-π < -(ℑ‘𝐴) ∧ -(ℑ‘𝐴) ≤ π)))
3820, 31, 37mpbir2and 713 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
39 3anass 1094 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-𝐴 ∈ ℂ ∧ (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π)))
403, 38, 39sylanbrc 583 . . . . . 6 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
41 ellogrn 26493 . . . . . 6 (-𝐴 ∈ ran log ↔ (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
4240, 41sylibr 234 . . . . 5 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ran log)
4342ex 412 . . . 4 (𝐴 ∈ ran log → (¬ -π = -(ℑ‘𝐴) → -𝐴 ∈ ran log))
4443orrd 863 . . 3 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log))
45 recn 11093 . . . . . . . 8 (π ∈ ℝ → π ∈ ℂ)
46 recn 11093 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → (ℑ‘𝐴) ∈ ℂ)
4745, 46anim12i 613 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
488, 7, 47sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
491, 48syl 17 . . . . 5 (𝐴 ∈ ran log → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
50 neg11 11409 . . . . . 6 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ π = (ℑ‘𝐴)))
51 eqcom 2738 . . . . . 6 (π = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = π)
5250, 51bitrdi 287 . . . . 5 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5349, 52syl 17 . . . 4 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5453orbi1d 916 . . 3 (𝐴 ∈ ran log → ((-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log) ↔ ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log)))
5544, 54mpbid 232 . 2 (𝐴 ∈ ran log → ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log))
5655orcanai 1004 1 ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  ran crn 5617  cfv 6481  cc 11001  cr 11002   < clt 11143  cle 11144  -cneg 11342  cim 15002  πcpi 15970  logclog 26488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490
This theorem is referenced by:  logrec  26698
  Copyright terms: Public domain W3C validator