MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logreclem Structured version   Visualization version   GIF version

Theorem logreclem 25343
Description: Symmetry of the natural logarithm range by negation. Lemma for logrec 25344. (Contributed by Saveliy Skresanov, 27-Dec-2016.)
Assertion
Ref Expression
logreclem ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)

Proof of Theorem logreclem
StepHypRef Expression
1 logrncn 25149 . . . . . . . . 9 (𝐴 ∈ ran log → 𝐴 ∈ ℂ)
21adantr 483 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → 𝐴 ∈ ℂ)
32negcld 10987 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ℂ)
4 ellogrn 25146 . . . . . . . . . . . . . 14 (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
54biimpi 218 . . . . . . . . . . . . 13 (𝐴 ∈ ran log → (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
65simp3d 1140 . . . . . . . . . . . 12 (𝐴 ∈ ran log → (ℑ‘𝐴) ≤ π)
7 imcl 14473 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
8 pire 25047 . . . . . . . . . . . . 13 π ∈ ℝ
9 leneg 11146 . . . . . . . . . . . . . 14 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π ↔ -π ≤ -(ℑ‘𝐴)))
109biimpd 231 . . . . . . . . . . . . 13 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
117, 8, 10sylancl 588 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
121, 6, 11sylc 65 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π ≤ -(ℑ‘𝐴))
138renegcli 10950 . . . . . . . . . . . . . 14 -π ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -π ∈ ℝ)
157renegcld 11070 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
1614, 15leloed 10786 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) ↔ (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
1716biimpd 231 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
181, 12, 17sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴)))
1918orcomd 867 . . . . . . . . 9 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -π < -(ℑ‘𝐴)))
2019orcanai 999 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -π < -(ℑ‘𝐴))
215simp2d 1139 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π < (ℑ‘𝐴))
22 ltnegcon1 11144 . . . . . . . . . . . . 13 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) ↔ -(ℑ‘𝐴) < π))
2322biimpd 231 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
248, 7, 23sylancr 589 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
251, 21, 24sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → -(ℑ‘𝐴) < π)
2625adantr 483 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) < π)
27 ltle 10732 . . . . . . . . . . . 12 ((-(ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
2815, 8, 27sylancl 588 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
291, 28syl 17 . . . . . . . . . 10 (𝐴 ∈ ran log → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3029adantr 483 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3126, 30mpd 15 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ π)
32 imneg 14495 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
3332breq2d 5081 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
342, 33syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
3532breq1d 5079 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
362, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
3734, 36anbi12d 632 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-π < -(ℑ‘𝐴) ∧ -(ℑ‘𝐴) ≤ π)))
3820, 31, 37mpbir2and 711 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
39 3anass 1091 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-𝐴 ∈ ℂ ∧ (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π)))
403, 38, 39sylanbrc 585 . . . . . 6 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
41 ellogrn 25146 . . . . . 6 (-𝐴 ∈ ran log ↔ (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
4240, 41sylibr 236 . . . . 5 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ran log)
4342ex 415 . . . 4 (𝐴 ∈ ran log → (¬ -π = -(ℑ‘𝐴) → -𝐴 ∈ ran log))
4443orrd 859 . . 3 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log))
45 recn 10630 . . . . . . . 8 (π ∈ ℝ → π ∈ ℂ)
46 recn 10630 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → (ℑ‘𝐴) ∈ ℂ)
4745, 46anim12i 614 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
488, 7, 47sylancr 589 . . . . . 6 (𝐴 ∈ ℂ → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
491, 48syl 17 . . . . 5 (𝐴 ∈ ran log → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
50 neg11 10940 . . . . . 6 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ π = (ℑ‘𝐴)))
51 eqcom 2831 . . . . . 6 (π = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = π)
5250, 51syl6bb 289 . . . . 5 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5349, 52syl 17 . . . 4 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5453orbi1d 913 . . 3 (𝐴 ∈ ran log → ((-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log) ↔ ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log)))
5544, 54mpbid 234 . 2 (𝐴 ∈ ran log → ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log))
5655orcanai 999 1 ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113   class class class wbr 5069  ran crn 5559  cfv 6358  cc 10538  cr 10539   < clt 10678  cle 10679  -cneg 10874  cim 14460  πcpi 15423  logclog 25141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-log 25143
This theorem is referenced by:  logrec  25344
  Copyright terms: Public domain W3C validator