Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  logreclem Structured version   Visualization version   GIF version

Theorem logreclem 25326
 Description: Symmetry of the natural logarithm range by negation. Lemma for logrec 25327. (Contributed by Saveliy Skresanov, 27-Dec-2016.)
Assertion
Ref Expression
logreclem ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)

Proof of Theorem logreclem
StepHypRef Expression
1 logrncn 25132 . . . . . . . . 9 (𝐴 ∈ ran log → 𝐴 ∈ ℂ)
21adantr 484 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → 𝐴 ∈ ℂ)
32negcld 10961 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ℂ)
4 ellogrn 25129 . . . . . . . . . . . . . 14 (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
54biimpi 219 . . . . . . . . . . . . 13 (𝐴 ∈ ran log → (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))
65simp3d 1141 . . . . . . . . . . . 12 (𝐴 ∈ ran log → (ℑ‘𝐴) ≤ π)
7 imcl 14449 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
8 pire 25029 . . . . . . . . . . . . 13 π ∈ ℝ
9 leneg 11120 . . . . . . . . . . . . . 14 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π ↔ -π ≤ -(ℑ‘𝐴)))
109biimpd 232 . . . . . . . . . . . . 13 (((ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
117, 8, 10sylancl 589 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((ℑ‘𝐴) ≤ π → -π ≤ -(ℑ‘𝐴)))
121, 6, 11sylc 65 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π ≤ -(ℑ‘𝐴))
138renegcli 10924 . . . . . . . . . . . . . 14 -π ∈ ℝ
1413a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -π ∈ ℝ)
157renegcld 11044 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
1614, 15leloed 10760 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) ↔ (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
1716biimpd 232 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π ≤ -(ℑ‘𝐴) → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴))))
181, 12, 17sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → (-π < -(ℑ‘𝐴) ∨ -π = -(ℑ‘𝐴)))
1918orcomd 868 . . . . . . . . 9 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -π < -(ℑ‘𝐴)))
2019orcanai 1000 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -π < -(ℑ‘𝐴))
215simp2d 1140 . . . . . . . . . . 11 (𝐴 ∈ ran log → -π < (ℑ‘𝐴))
22 ltnegcon1 11118 . . . . . . . . . . . . 13 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) ↔ -(ℑ‘𝐴) < π))
2322biimpd 232 . . . . . . . . . . . 12 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
248, 7, 23sylancr 590 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-π < (ℑ‘𝐴) → -(ℑ‘𝐴) < π))
251, 21, 24sylc 65 . . . . . . . . . 10 (𝐴 ∈ ran log → -(ℑ‘𝐴) < π)
2625adantr 484 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) < π)
27 ltle 10706 . . . . . . . . . . . 12 ((-(ℑ‘𝐴) ∈ ℝ ∧ π ∈ ℝ) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
2815, 8, 27sylancl 589 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
291, 28syl 17 . . . . . . . . . 10 (𝐴 ∈ ran log → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3029adantr 484 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-(ℑ‘𝐴) < π → -(ℑ‘𝐴) ≤ π))
3126, 30mpd 15 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -(ℑ‘𝐴) ≤ π)
32 imneg 14471 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴))
3332breq2d 5051 . . . . . . . . . 10 (𝐴 ∈ ℂ → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
342, 33syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ↔ -π < -(ℑ‘𝐴)))
3532breq1d 5049 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
362, 35syl 17 . . . . . . . . 9 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((ℑ‘-𝐴) ≤ π ↔ -(ℑ‘𝐴) ≤ π))
3734, 36anbi12d 633 . . . . . . . 8 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → ((-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-π < -(ℑ‘𝐴) ∧ -(ℑ‘𝐴) ≤ π)))
3820, 31, 37mpbir2and 712 . . . . . . 7 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
39 3anass 1092 . . . . . . 7 ((-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π) ↔ (-𝐴 ∈ ℂ ∧ (-π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π)))
403, 38, 39sylanbrc 586 . . . . . 6 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
41 ellogrn 25129 . . . . . 6 (-𝐴 ∈ ran log ↔ (-𝐴 ∈ ℂ ∧ -π < (ℑ‘-𝐴) ∧ (ℑ‘-𝐴) ≤ π))
4240, 41sylibr 237 . . . . 5 ((𝐴 ∈ ran log ∧ ¬ -π = -(ℑ‘𝐴)) → -𝐴 ∈ ran log)
4342ex 416 . . . 4 (𝐴 ∈ ran log → (¬ -π = -(ℑ‘𝐴) → -𝐴 ∈ ran log))
4443orrd 860 . . 3 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log))
45 recn 10604 . . . . . . . 8 (π ∈ ℝ → π ∈ ℂ)
46 recn 10604 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → (ℑ‘𝐴) ∈ ℂ)
4745, 46anim12i 615 . . . . . . 7 ((π ∈ ℝ ∧ (ℑ‘𝐴) ∈ ℝ) → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
488, 7, 47sylancr 590 . . . . . 6 (𝐴 ∈ ℂ → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
491, 48syl 17 . . . . 5 (𝐴 ∈ ran log → (π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ))
50 neg11 10914 . . . . . 6 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ π = (ℑ‘𝐴)))
51 eqcom 2828 . . . . . 6 (π = (ℑ‘𝐴) ↔ (ℑ‘𝐴) = π)
5250, 51syl6bb 290 . . . . 5 ((π ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5349, 52syl 17 . . . 4 (𝐴 ∈ ran log → (-π = -(ℑ‘𝐴) ↔ (ℑ‘𝐴) = π))
5453orbi1d 914 . . 3 (𝐴 ∈ ran log → ((-π = -(ℑ‘𝐴) ∨ -𝐴 ∈ ran log) ↔ ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log)))
5544, 54mpbid 235 . 2 (𝐴 ∈ ran log → ((ℑ‘𝐴) = π ∨ -𝐴 ∈ ran log))
5655orcanai 1000 1 ((𝐴 ∈ ran log ∧ ¬ (ℑ‘𝐴) = π) → -𝐴 ∈ ran log)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   class class class wbr 5039  ran crn 5529  ‘cfv 6328  ℂcc 10512  ℝcr 10513   < clt 10652   ≤ cle 10653  -cneg 10848  ℑcim 14436  πcpi 15399  logclog 25124 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-mulg 18203  df-cntz 18425  df-cmn 18886  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-fbas 20517  df-fg 20518  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-ntr 21603  df-cls 21604  df-nei 21681  df-lp 21719  df-perf 21720  df-cn 21810  df-cnp 21811  df-haus 21898  df-tx 22145  df-hmeo 22338  df-fil 22429  df-fm 22521  df-flim 22522  df-flf 22523  df-xms 22905  df-ms 22906  df-tms 22907  df-cncf 23461  df-limc 24447  df-dv 24448  df-log 25126 This theorem is referenced by:  logrec  25327
 Copyright terms: Public domain W3C validator