MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoass Structured version   Visualization version   GIF version

Theorem pcoass 24900
Description: Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcoass.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoass.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoass.4 (𝜑𝐻 ∈ (II Cn 𝐽))
pcoass.5 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcoass.6 (𝜑 → (𝐺‘1) = (𝐻‘0))
pcoass.7 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
Assertion
Ref Expression
pcoass (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝑥,𝐽   𝜑,𝑥
Allowed substitution hint:   𝑃(𝑥)

Proof of Theorem pcoass
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4490 . . . . . . . . . . 11 (𝑥 ≤ (1 / 4) → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥))
21fveq2d 6844 . . . . . . . . . 10 (𝑥 ≤ (1 / 4) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)))
32adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)))
4 2cn 12237 . . . . . . . . . . . . 13 2 ∈ ℂ
5 elicc01 13403 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
65simp1bi 1145 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
76adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℝ)
87recnd 11178 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℂ)
9 mulcom 11130 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) = (𝑥 · 2))
104, 8, 9sylancr 587 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) = (𝑥 · 2))
115simp2bi 1146 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) → 0 ≤ 𝑥)
1211adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 0 ≤ 𝑥)
13 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 4))
14 0re 11152 . . . . . . . . . . . . . . 15 0 ∈ ℝ
15 4nn 12245 . . . . . . . . . . . . . . . 16 4 ∈ ℕ
16 nnrecre 12204 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
1715, 16ax-mp 5 . . . . . . . . . . . . . . 15 (1 / 4) ∈ ℝ
1814, 17elicc2i 13349 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,](1 / 4)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ (1 / 4)))
197, 12, 13, 18syl3anbrc 1344 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ (0[,](1 / 4)))
20 2rp 12932 . . . . . . . . . . . . . 14 2 ∈ ℝ+
214mul02i 11339 . . . . . . . . . . . . . 14 (0 · 2) = 0
2217recni 11164 . . . . . . . . . . . . . . 15 (1 / 4) ∈ ℂ
23222timesi 12295 . . . . . . . . . . . . . . . 16 (2 · (1 / 4)) = ((1 / 4) + (1 / 4))
24 2ne0 12266 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
25 recdiv2 11871 . . . . . . . . . . . . . . . . . . . 20 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) / 2) = (1 / (2 · 2)))
264, 24, 4, 24, 25mp4an 693 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) / 2) = (1 / (2 · 2))
27 2t2e4 12321 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
2827oveq2i 7380 . . . . . . . . . . . . . . . . . . 19 (1 / (2 · 2)) = (1 / 4)
2926, 28eqtri 2752 . . . . . . . . . . . . . . . . . 18 ((1 / 2) / 2) = (1 / 4)
3029, 29oveq12i 7381 . . . . . . . . . . . . . . . . 17 (((1 / 2) / 2) + ((1 / 2) / 2)) = ((1 / 4) + (1 / 4))
31 halfcn 12372 . . . . . . . . . . . . . . . . . 18 (1 / 2) ∈ ℂ
32 2halves 12376 . . . . . . . . . . . . . . . . . 18 ((1 / 2) ∈ ℂ → (((1 / 2) / 2) + ((1 / 2) / 2)) = (1 / 2))
3331, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 (((1 / 2) / 2) + ((1 / 2) / 2)) = (1 / 2)
3430, 33eqtr3i 2754 . . . . . . . . . . . . . . . 16 ((1 / 4) + (1 / 4)) = (1 / 2)
3523, 34eqtri 2752 . . . . . . . . . . . . . . 15 (2 · (1 / 4)) = (1 / 2)
364, 22, 35mulcomli 11159 . . . . . . . . . . . . . 14 ((1 / 4) · 2) = (1 / 2)
3714, 17, 20, 21, 36iccdili 13428 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,](1 / 4)) → (𝑥 · 2) ∈ (0[,](1 / 2)))
3819, 37syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ (0[,](1 / 2)))
3910, 38eqeltrd 2828 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ (0[,](1 / 2)))
40 pcoass.2 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (II Cn 𝐽))
41 pcoass.3 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (II Cn 𝐽))
42 pcoass.4 . . . . . . . . . . . . . 14 (𝜑𝐻 ∈ (II Cn 𝐽))
43 pcoass.6 . . . . . . . . . . . . . 14 (𝜑 → (𝐺‘1) = (𝐻‘0))
4441, 42, 43pcocn 24893 . . . . . . . . . . . . 13 (𝜑 → (𝐺(*𝑝𝐽)𝐻) ∈ (II Cn 𝐽))
4540, 44pcoval1 24889 . . . . . . . . . . . 12 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥))))
4640, 41pcoval1 24889 . . . . . . . . . . . 12 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥))))
4745, 46eqtr4d 2767 . . . . . . . . . . 11 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
4839, 47sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
4948anassrs 467 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
503, 49eqtrd 2764 . . . . . . . 8 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
5150adantlr 715 . . . . . . 7 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
52 simplll 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝜑)
536ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ℝ)
5453adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℝ)
55 letric 11250 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (1 / 4) ∈ ℝ) → (𝑥 ≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥))
5653, 17, 55sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → (𝑥 ≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥))
5756orcanai 1004 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ≤ 𝑥)
58 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 2))
59 halfre 12371 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
6017, 59elicc2i 13349 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) ↔ (𝑥 ∈ ℝ ∧ (1 / 4) ≤ 𝑥𝑥 ≤ (1 / 2)))
6154, 57, 58, 60syl3anbrc 1344 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ((1 / 4)[,](1 / 2)))
6260simp1bi 1145 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → 𝑥 ∈ ℝ)
63 readdcl 11127 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (1 / 4) ∈ ℝ) → (𝑥 + (1 / 4)) ∈ ℝ)
6462, 17, 63sylancl 586 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ ℝ)
6517a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ∈ ℝ)
6660simp2bi 1146 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ≤ 𝑥)
6765, 62, 65, 66leadd1dd 11768 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → ((1 / 4) + (1 / 4)) ≤ (𝑥 + (1 / 4)))
6834, 67eqbrtrrid 5138 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 2) ≤ (𝑥 + (1 / 4)))
6959a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 2) ∈ ℝ)
7060simp3bi 1147 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → 𝑥 ≤ (1 / 2))
71 2lt4 12332 . . . . . . . . . . . . . . . . 17 2 < 4
72 2re 12236 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
73 4re 12246 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
74 2pos 12265 . . . . . . . . . . . . . . . . . 18 0 < 2
75 4pos 12269 . . . . . . . . . . . . . . . . . 18 0 < 4
7672, 73, 74, 75ltrecii 12075 . . . . . . . . . . . . . . . . 17 (2 < 4 ↔ (1 / 4) < (1 / 2))
7771, 76mpbi 230 . . . . . . . . . . . . . . . 16 (1 / 4) < (1 / 2)
7817, 59, 77ltleii 11273 . . . . . . . . . . . . . . 15 (1 / 4) ≤ (1 / 2)
7978a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ≤ (1 / 2))
8062, 65, 69, 69, 70, 79le2addd 11773 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ≤ ((1 / 2) + (1 / 2)))
81 ax-1cn 11102 . . . . . . . . . . . . . 14 1 ∈ ℂ
82 2halves 12376 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8381, 82ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8480, 83breqtrdi 5143 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ≤ 1)
85 1re 11150 . . . . . . . . . . . . 13 1 ∈ ℝ
8659, 85elicc2i 13349 . . . . . . . . . . . 12 ((𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1) ↔ ((𝑥 + (1 / 4)) ∈ ℝ ∧ (1 / 2) ≤ (𝑥 + (1 / 4)) ∧ (𝑥 + (1 / 4)) ≤ 1))
8764, 68, 84, 86syl3anbrc 1344 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1))
8861, 87syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1))
89 pcoass.5 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1) = (𝐺‘0))
9041, 42pco0 24890 . . . . . . . . . . . 12 (𝜑 → ((𝐺(*𝑝𝐽)𝐻)‘0) = (𝐺‘0))
9189, 90eqtr4d 2767 . . . . . . . . . . 11 (𝜑 → (𝐹‘1) = ((𝐺(*𝑝𝐽)𝐻)‘0))
9240, 44, 91pcoval2 24892 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)))
9352, 88, 92syl2anc 584 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)))
9483oveq2i 7380 . . . . . . . . . . . 12 ((2 · (𝑥 + (1 / 4))) − ((1 / 2) + (1 / 2))) = ((2 · (𝑥 + (1 / 4))) − 1)
95 2cnd 12240 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 2 ∈ ℂ)
9654recnd 11178 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℂ)
9722a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ∈ ℂ)
9895, 96, 97adddid 11174 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 · 𝑥) + (2 · (1 / 4))))
9935oveq2i 7380 . . . . . . . . . . . . . 14 ((2 · 𝑥) + (2 · (1 / 4))) = ((2 · 𝑥) + (1 / 2))
10098, 99eqtrdi 2780 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 · 𝑥) + (1 / 2)))
101100oveq1d 7384 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − ((1 / 2) + (1 / 2))) = (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))))
10294, 101eqtr3id 2778 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))))
103 remulcl 11129 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
10472, 54, 103sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ℝ)
105104recnd 11178 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ℂ)
10631a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 2) ∈ ℂ)
107105, 106, 106pnpcan2d 11547 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))) = ((2 · 𝑥) − (1 / 2)))
108102, 107eqtrd 2764 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = ((2 · 𝑥) − (1 / 2)))
109108fveq2d 6844 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))))
1104, 96, 9sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) = (𝑥 · 2))
11181, 4, 24divcan1i 11902 . . . . . . . . . . . . . . 15 ((1 / 2) · 2) = 1
11217, 59, 20, 36, 111iccdili 13428 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 · 2) ∈ ((1 / 2)[,]1))
11361, 112syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ ((1 / 2)[,]1))
114110, 113eqeltrd 2828 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ((1 / 2)[,]1))
11531subidi 11469 . . . . . . . . . . . . 13 ((1 / 2) − (1 / 2)) = 0
116 1mhlfehlf 12377 . . . . . . . . . . . . 13 (1 − (1 / 2)) = (1 / 2)
11759, 85, 59, 115, 116iccshftli 13426 . . . . . . . . . . . 12 ((2 · 𝑥) ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2)))
118114, 117syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2)))
11941, 42pcoval1 24889 . . . . . . . . . . 11 ((𝜑 ∧ ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2))) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))))
12052, 118, 119syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))))
12195, 105, 106subdid 11610 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2 · 𝑥) − (1 / 2))) = ((2 · (2 · 𝑥)) − (2 · (1 / 2))))
1224, 24recidi 11889 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
123122oveq2i 7380 . . . . . . . . . . . 12 ((2 · (2 · 𝑥)) − (2 · (1 / 2))) = ((2 · (2 · 𝑥)) − 1)
124121, 123eqtrdi 2780 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2 · 𝑥) − (1 / 2))) = ((2 · (2 · 𝑥)) − 1))
125124fveq2d 6844 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
126120, 125eqtrd 2764 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
12793, 109, 1263eqtrd 2768 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
128 iffalse 4493 . . . . . . . . . 10 𝑥 ≤ (1 / 4) → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (𝑥 + (1 / 4)))
129128fveq2d 6844 . . . . . . . . 9 𝑥 ≤ (1 / 4) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))))
130129adantl 481 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))))
13140, 41, 89pcoval2 24892 . . . . . . . . 9 ((𝜑 ∧ (2 · 𝑥) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
13252, 114, 131syl2anc 584 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
133127, 130, 1323eqtr4d 2774 . . . . . . 7 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
13451, 133pm2.61dan 812 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
135 iftrue 4490 . . . . . . . 8 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))
136135fveq2d 6844 . . . . . . 7 (𝑥 ≤ (1 / 2) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))))
137136adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))))
138 iftrue 4490 . . . . . . 7 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
139138adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
140134, 137, 1393eqtr4d 2774 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
141 elii2 24808 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
142 halfge0 12374 . . . . . . . . . . . . . 14 0 ≤ (1 / 2)
143 halflt1 12375 . . . . . . . . . . . . . . 15 (1 / 2) < 1
14459, 85, 143ltleii 11273 . . . . . . . . . . . . . 14 (1 / 2) ≤ 1
145 elicc01 13403 . . . . . . . . . . . . . 14 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
14659, 142, 144, 145mpbir3an 1342 . . . . . . . . . . . . 13 (1 / 2) ∈ (0[,]1)
147 1elunit 13407 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
148 iccss2 13354 . . . . . . . . . . . . 13 (((1 / 2) ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
149146, 147, 148mp2an 692 . . . . . . . . . . . 12 ((1 / 2)[,]1) ⊆ (0[,]1)
150149sseli 3939 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ (0[,]1))
1514, 24div0i 11892 . . . . . . . . . . . 12 (0 / 2) = 0
152 eqid 2729 . . . . . . . . . . . 12 (1 / 2) = (1 / 2)
15314, 85, 20, 151, 152icccntri 13430 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) → (𝑥 / 2) ∈ (0[,](1 / 2)))
15431addlidi 11338 . . . . . . . . . . . 12 (0 + (1 / 2)) = (1 / 2)
15514, 59, 59, 154, 83iccshftri 13424 . . . . . . . . . . 11 ((𝑥 / 2) ∈ (0[,](1 / 2)) → ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1))
156150, 153, 1553syl 18 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1))
15740, 44, 91pcoval2 24892 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)))
158156, 157sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)))
15959, 85elicc2i 13349 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) ↔ (𝑥 ∈ ℝ ∧ (1 / 2) ≤ 𝑥𝑥 ≤ 1))
160159simp1bi 1145 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ ℝ)
161160recnd 11178 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ ℂ)
162 1cnd 11145 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → 1 ∈ ℂ)
163 2cnd 12240 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((1 / 2)[,]1) → 2 ∈ ℂ)
16424a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((1 / 2)[,]1) → 2 ≠ 0)
165161, 162, 163, 164divdird 11972 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 + 1) / 2) = ((𝑥 / 2) + (1 / 2)))
166165oveq2d 7385 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 + 1) / 2)) = (2 · ((𝑥 / 2) + (1 / 2))))
167 peano2cn 11322 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ)
168161, 167syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) → (𝑥 + 1) ∈ ℂ)
169168, 163, 164divcan2d 11936 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 + 1) / 2)) = (𝑥 + 1))
170166, 169eqtr3d 2766 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 / 2) + (1 / 2))) = (𝑥 + 1))
171161, 162, 170mvrraddd 11566 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · ((𝑥 / 2) + (1 / 2))) − 1) = 𝑥)
172171fveq2d 6844 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘𝑥))
173172adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘𝑥))
17441, 42, 43pcoval2 24892 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝𝐽)𝐻)‘𝑥) = (𝐻‘((2 · 𝑥) − 1)))
175158, 173, 1743eqtrd 2768 . . . . . . . 8 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
176141, 175sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
177176anassrs 467 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
178 iffalse 4493 . . . . . . . 8 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2)))
179178fveq2d 6844 . . . . . . 7 𝑥 ≤ (1 / 2) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))))
180179adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))))
181 iffalse 4493 . . . . . . 7 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1)))
182181adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1)))
183177, 180, 1823eqtr4d 2774 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
184140, 183pm2.61dan 812 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
185184mpteq2dva 5195 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))))
186 pcoass.7 . . . . . . 7 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
187 iitopon 24748 . . . . . . . . 9 II ∈ (TopOn‘(0[,]1))
188187a1i 11 . . . . . . . 8 (𝜑 → II ∈ (TopOn‘(0[,]1)))
189188cnmptid 23524 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
190 0elunit 13406 . . . . . . . . . 10 0 ∈ (0[,]1)
191190a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0[,]1))
192188, 188, 191cnmptc 23525 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
193 eqid 2729 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
194 eqid 2729 . . . . . . . . 9 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
195 eqid 2729 . . . . . . . . 9 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
196 dfii2 24751 . . . . . . . . 9 II = ((topGen‘ran (,)) ↾t (0[,]1))
197 0red 11153 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
198 1red 11151 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
199146a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ (0[,]1))
200 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
201200oveq1d 7384 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 2) + (1 / 4)))
20231, 22addcomi 11341 . . . . . . . . . . 11 ((1 / 2) + (1 / 4)) = ((1 / 4) + (1 / 2))
203201, 202eqtrdi 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 / 2)))
20417, 59ltnlei 11271 . . . . . . . . . . . . 13 ((1 / 4) < (1 / 2) ↔ ¬ (1 / 2) ≤ (1 / 4))
20577, 204mpbi 230 . . . . . . . . . . . 12 ¬ (1 / 2) ≤ (1 / 4)
206200breq1d 5112 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 ≤ (1 / 4) ↔ (1 / 2) ≤ (1 / 4)))
207205, 206mtbiri 327 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ¬ 𝑦 ≤ (1 / 4))
208207iffalsed 4495 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = (𝑦 + (1 / 4)))
209200oveq1d 7384 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = ((1 / 2) / 2))
210209, 29eqtrdi 2780 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = (1 / 4))
211210oveq1d 7384 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((𝑦 / 2) + (1 / 2)) = ((1 / 4) + (1 / 2)))
212203, 208, 2113eqtr4d 2774 . . . . . . . . 9 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = ((𝑦 / 2) + (1 / 2)))
213 eqid 2729 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4)))
214 eqid 2729 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) = ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2)))
21559a1i 11 . . . . . . . . . 10 (𝜑 → (1 / 2) ∈ ℝ)
21673, 75recgt0ii 12065 . . . . . . . . . . . . 13 0 < (1 / 4)
21714, 17, 216ltleii 11273 . . . . . . . . . . . 12 0 ≤ (1 / 4)
21814, 59elicc2i 13349 . . . . . . . . . . . 12 ((1 / 4) ∈ (0[,](1 / 2)) ↔ ((1 / 4) ∈ ℝ ∧ 0 ≤ (1 / 4) ∧ (1 / 4) ≤ (1 / 2)))
21917, 217, 78, 218mpbir3an 1342 . . . . . . . . . . 11 (1 / 4) ∈ (0[,](1 / 2))
220219a1i 11 . . . . . . . . . 10 (𝜑 → (1 / 4) ∈ (0[,](1 / 2)))
221 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 4))
222221oveq2d 7385 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 4)))
223221oveq1d 7384 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 / 4)))
22423, 222, 2233eqtr4a 2790 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (𝑦 + (1 / 4)))
225 retopon 24627 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
226 0xr 11197 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
22759rexri 11208 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ*
228 lbicc2 13401 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2)) → 0 ∈ (0[,](1 / 2)))
229226, 227, 142, 228mp3an 1463 . . . . . . . . . . . . . . 15 0 ∈ (0[,](1 / 2))
230 iccss2 13354 . . . . . . . . . . . . . . 15 ((0 ∈ (0[,](1 / 2)) ∧ (1 / 4) ∈ (0[,](1 / 2))) → (0[,](1 / 4)) ⊆ (0[,](1 / 2)))
231229, 219, 230mp2an 692 . . . . . . . . . . . . . 14 (0[,](1 / 4)) ⊆ (0[,](1 / 2))
232 iccssre 13366 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
23314, 59, 232mp2an 692 . . . . . . . . . . . . . 14 (0[,](1 / 2)) ⊆ ℝ
234231, 233sstri 3953 . . . . . . . . . . . . 13 (0[,](1 / 4)) ⊆ ℝ
235 resttopon 23024 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 4)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4))))
236225, 234, 235mp2an 692 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4)))
237236a1i 11 . . . . . . . . . . 11 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4))))
238237, 188cnmpt1st 23531 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 4))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 4)))))
239 retop 24625 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
240 ovex 7402 . . . . . . . . . . . . . 14 (0[,](1 / 2)) ∈ V
241 restabs 23028 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (0[,](1 / 4)) ⊆ (0[,](1 / 2)) ∧ (0[,](1 / 2)) ∈ V) → (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4))))
242239, 231, 240, 241mp3an 1463 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4)))
243242eqcomi 2738 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) = (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4)))
244 resttopon 23024 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
245225, 233, 244mp2an 692 . . . . . . . . . . . . 13 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
246245a1i 11 . . . . . . . . . . . 12 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
247231a1i 11 . . . . . . . . . . . 12 (𝜑 → (0[,](1 / 4)) ⊆ (0[,](1 / 2)))
248194iihalf1cn 24802 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
249248a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
250243, 246, 247, 249cnmpt1res 23539 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,](1 / 4)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 4))) Cn II))
251 oveq2 7377 . . . . . . . . . . 11 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
252237, 188, 238, 237, 250, 251cnmpt21 23534 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 4))) ×t II) Cn II))
253 iccssre 13366 . . . . . . . . . . . . . 14 (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((1 / 4)[,](1 / 2)) ⊆ ℝ)
25417, 59, 253mp2an 692 . . . . . . . . . . . . 13 ((1 / 4)[,](1 / 2)) ⊆ ℝ
255 resttopon 23024 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 4)[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2))))
256225, 254, 255mp2an 692 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2)))
257256a1i 11 . . . . . . . . . . 11 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2))))
258257, 188cnmpt1st 23531 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2)))))
259 eqid 2729 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
260254a1i 11 . . . . . . . . . . . 12 (𝜑 → ((1 / 4)[,](1 / 2)) ⊆ ℝ)
261 unitssre 13436 . . . . . . . . . . . . 13 (0[,]1) ⊆ ℝ
262261a1i 11 . . . . . . . . . . . 12 (𝜑 → (0[,]1) ⊆ ℝ)
263149, 87sselid 3941 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ (0[,]1))
264263adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((1 / 4)[,](1 / 2))) → (𝑥 + (1 / 4)) ∈ (0[,]1))
265259cnfldtopon 24646 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
266265a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
267266cnmptid 23524 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
26817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (1 / 4) ∈ ℝ)
269268recnd 11178 . . . . . . . . . . . . . 14 (𝜑 → (1 / 4) ∈ ℂ)
270266, 266, 269cnmptc 23525 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 4)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
271259addcn 24730 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
272271a1i 11 . . . . . . . . . . . . 13 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
273266, 267, 270, 272cnmpt12f 23529 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 + (1 / 4))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
274259, 214, 196, 260, 262, 264, 273cnmptre 24797 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((1 / 4)[,](1 / 2)) ↦ (𝑥 + (1 / 4))) ∈ (((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) Cn II))
275 oveq1 7376 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 + (1 / 4)) = (𝑦 + (1 / 4)))
276257, 188, 258, 257, 274, 275cnmpt21 23534 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝑦 + (1 / 4))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ×t II) Cn II))
277193, 213, 214, 194, 197, 215, 220, 188, 224, 252, 276cnmpopc 24798 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4)))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
278 iccssre 13366 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
27959, 85, 278mp2an 692 . . . . . . . . . . . 12 ((1 / 2)[,]1) ⊆ ℝ
280 resttopon 23024 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
281225, 279, 280mp2an 692 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
282281a1i 11 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
283282, 188cnmpt1st 23531 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
284279a1i 11 . . . . . . . . . . 11 (𝜑 → ((1 / 2)[,]1) ⊆ ℝ)
285149, 156sselid 3941 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 / 2) + (1 / 2)) ∈ (0[,]1))
286285adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝑥 / 2) + (1 / 2)) ∈ (0[,]1))
287259divccn 24740 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2884, 24, 287mp2an 692 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
289288a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
29031a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
291266, 266, 290cnmptc 23525 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
292266, 289, 291, 272cnmpt12f 23529 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥 / 2) + (1 / 2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
293259, 195, 196, 284, 262, 286, 292cnmptre 24797 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((𝑥 / 2) + (1 / 2))) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
294 oveq1 7376 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 / 2) = (𝑦 / 2))
295294oveq1d 7384 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 / 2) + (1 / 2)) = ((𝑦 / 2) + (1 / 2)))
296282, 188, 283, 282, 293, 295cnmpt21 23534 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((𝑦 / 2) + (1 / 2))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
297193, 194, 195, 196, 197, 198, 199, 188, 212, 277, 296cnmpopc 24798 . . . . . . . 8 (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) ∈ ((II ×t II) Cn II))
298 breq1 5105 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 ≤ (1 / 2) ↔ 𝑦 ≤ (1 / 2)))
299 breq1 5105 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ≤ (1 / 4) ↔ 𝑦 ≤ (1 / 4)))
300299, 251, 275ifbieq12d 4513 . . . . . . . . . . . 12 (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))))
301298, 300, 295ifbieq12d 4513 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
302301equcoms 2020 . . . . . . . . . 10 (𝑦 = 𝑥 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
303302adantr 480 . . . . . . . . 9 ((𝑦 = 𝑥𝑧 = 0) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
304303eqcomd 2735 . . . . . . . 8 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
305188, 189, 192, 188, 188, 297, 304cnmpt12 23530 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) ∈ (II Cn II))
306186, 305eqeltrid 2832 . . . . . 6 (𝜑𝑃 ∈ (II Cn II))
307 iiuni 24750 . . . . . . 7 (0[,]1) = II
308307, 307cnf 23109 . . . . . 6 (𝑃 ∈ (II Cn II) → 𝑃:(0[,]1)⟶(0[,]1))
309306, 308syl 17 . . . . 5 (𝜑𝑃:(0[,]1)⟶(0[,]1))
310186fmpt 7064 . . . . 5 (∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈ (0[,]1) ↔ 𝑃:(0[,]1)⟶(0[,]1))
311309, 310sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈ (0[,]1))
312186a1i 11 . . . 4 (𝜑𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))))
31340, 44, 91pcocn 24893 . . . . . 6 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∈ (II Cn 𝐽))
314 eqid 2729 . . . . . . 7 𝐽 = 𝐽
315307, 314cnf 23109 . . . . . 6 ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)):(0[,]1)⟶ 𝐽)
316313, 315syl 17 . . . . 5 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)):(0[,]1)⟶ 𝐽)
317316feqmptd 6911 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) = (𝑦 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘𝑦)))
318 fveq2 6840 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘𝑦) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))))
319311, 312, 317, 318fmptcof 7084 . . 3 (𝜑 → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃) = (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))))
32040, 41, 89pcocn 24893 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
321320, 42pcoval 24887 . . 3 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))))
322185, 319, 3213eqtr4rd 2775 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃))
323 id 22 . . . . . . . 8 (𝑥 = 0 → 𝑥 = 0)
324323, 142eqbrtrdi 5141 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
325324iftrued 4492 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))
326323, 217eqbrtrdi 5141 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 4))
327326iftrued 4492 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥))
328 oveq2 7377 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
329 2t0e0 12326 . . . . . . 7 (2 · 0) = 0
330328, 329eqtrdi 2780 . . . . . 6 (𝑥 = 0 → (2 · 𝑥) = 0)
331325, 327, 3303eqtrd 2768 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 0)
332 c0ex 11144 . . . . 5 0 ∈ V
333331, 186, 332fvmpt 6950 . . . 4 (0 ∈ (0[,]1) → (𝑃‘0) = 0)
334191, 333syl 17 . . 3 (𝜑 → (𝑃‘0) = 0)
335147a1i 11 . . . 4 (𝜑 → 1 ∈ (0[,]1))
33659, 85ltnlei 11271 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
337143, 336mpbi 230 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
338 breq1 5105 . . . . . . . 8 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
339337, 338mtbiri 327 . . . . . . 7 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
340339iffalsed 4495 . . . . . 6 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2)))
341 oveq1 7376 . . . . . . . 8 (𝑥 = 1 → (𝑥 / 2) = (1 / 2))
342341oveq1d 7384 . . . . . . 7 (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = ((1 / 2) + (1 / 2)))
343342, 83eqtrdi 2780 . . . . . 6 (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = 1)
344340, 343eqtrd 2764 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 1)
345 1ex 11146 . . . . 5 1 ∈ V
346344, 186, 345fvmpt 6950 . . . 4 (1 ∈ (0[,]1) → (𝑃‘1) = 1)
347335, 346syl 17 . . 3 (𝜑 → (𝑃‘1) = 1)
348313, 306, 334, 347reparpht 24874 . 2 (𝜑 → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
349322, 348eqbrtrd 5124 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  wss 3911  ifcif 4484   cuni 4867   class class class wbr 5102  cmpt 5183  ran crn 5632  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  4c4 12219  (,)cioo 13282  [,]cicc 13285  t crest 17359  TopOpenctopn 17360  topGenctg 17376  fldccnfld 21240  Topctop 22756  TopOnctopon 22773   Cn ccn 23087   ×t ctx 23423  IIcii 24744  phcphtpc 24844  *𝑝cpco 24876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-cn 23090  df-cnp 23091  df-tx 23425  df-hmeo 23618  df-xms 24184  df-ms 24185  df-tms 24186  df-ii 24746  df-htpy 24845  df-phtpy 24846  df-phtpc 24867  df-pco 24881
This theorem is referenced by:  pcophtb  24905  pi1grplem  24925  pi1xfr  24931  pi1xfrcnvlem  24932
  Copyright terms: Public domain W3C validator