Step | Hyp | Ref
| Expression |
1 | | iftrue 4470 |
. . . . . . . . . . 11
⊢ (𝑥 ≤ (1 / 4) → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥)) |
2 | 1 | fveq2d 6772 |
. . . . . . . . . 10
⊢ (𝑥 ≤ (1 / 4) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(2 · 𝑥))) |
3 | 2 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(2 · 𝑥))) |
4 | | 2cn 12031 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
5 | | elicc01 13180 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤
𝑥 ∧ 𝑥 ≤ 1)) |
6 | 5 | simp1bi 1143 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0[,]1) → 𝑥 ∈
ℝ) |
7 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈
ℝ) |
8 | 7 | recnd 10987 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈
ℂ) |
9 | | mulcom 10941 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 𝑥
∈ ℂ) → (2 · 𝑥) = (𝑥 · 2)) |
10 | 4, 8, 9 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2
· 𝑥) = (𝑥 · 2)) |
11 | 5 | simp2bi 1144 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0[,]1) → 0 ≤
𝑥) |
12 | 11 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 0 ≤
𝑥) |
13 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 4)) |
14 | | 0re 10961 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
ℝ |
15 | | 4nn 12039 |
. . . . . . . . . . . . . . . 16
⊢ 4 ∈
ℕ |
16 | | nnrecre 11998 |
. . . . . . . . . . . . . . . 16
⊢ (4 ∈
ℕ → (1 / 4) ∈ ℝ) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (1 / 4)
∈ ℝ |
18 | 14, 17 | elicc2i 13127 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (0[,](1 / 4)) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥 ∧ 𝑥 ≤ (1 / 4))) |
19 | 7, 12, 13, 18 | syl3anbrc 1341 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ (0[,](1 /
4))) |
20 | | 2rp 12717 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ+ |
21 | 4 | mul02i 11147 |
. . . . . . . . . . . . . 14
⊢ (0
· 2) = 0 |
22 | 17 | recni 10973 |
. . . . . . . . . . . . . . 15
⊢ (1 / 4)
∈ ℂ |
23 | 22 | 2timesi 12094 |
. . . . . . . . . . . . . . . 16
⊢ (2
· (1 / 4)) = ((1 / 4) + (1 / 4)) |
24 | | 2ne0 12060 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ≠
0 |
25 | | recdiv2 11671 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) →
((1 / 2) / 2) = (1 / (2 · 2))) |
26 | 4, 24, 4, 24, 25 | mp4an 689 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1 / 2)
/ 2) = (1 / (2 · 2)) |
27 | | 2t2e4 12120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (2
· 2) = 4 |
28 | 27 | oveq2i 7279 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 / (2
· 2)) = (1 / 4) |
29 | 26, 28 | eqtri 2767 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1 / 2)
/ 2) = (1 / 4) |
30 | 29, 29 | oveq12i 7280 |
. . . . . . . . . . . . . . . . 17
⊢ (((1 / 2)
/ 2) + ((1 / 2) / 2)) = ((1 / 4) + (1 / 4)) |
31 | | halfcn 12171 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 / 2)
∈ ℂ |
32 | | 2halves 12184 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1 / 2)
∈ ℂ → (((1 / 2) / 2) + ((1 / 2) / 2)) = (1 /
2)) |
33 | 31, 32 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (((1 / 2)
/ 2) + ((1 / 2) / 2)) = (1 / 2) |
34 | 30, 33 | eqtr3i 2769 |
. . . . . . . . . . . . . . . 16
⊢ ((1 / 4)
+ (1 / 4)) = (1 / 2) |
35 | 23, 34 | eqtri 2767 |
. . . . . . . . . . . . . . 15
⊢ (2
· (1 / 4)) = (1 / 2) |
36 | 4, 22, 35 | mulcomli 10968 |
. . . . . . . . . . . . . 14
⊢ ((1 / 4)
· 2) = (1 / 2) |
37 | 14, 17, 20, 21, 36 | iccdili 13205 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0[,](1 / 4)) →
(𝑥 · 2) ∈
(0[,](1 / 2))) |
38 | 19, 37 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ (0[,](1 /
2))) |
39 | 10, 38 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2
· 𝑥) ∈ (0[,](1
/ 2))) |
40 | | pcoass.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
41 | | pcoass.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
42 | | pcoass.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) |
43 | | pcoass.6 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺‘1) = (𝐻‘0)) |
44 | 41, 42, 43 | pcocn 24161 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺(*𝑝‘𝐽)𝐻) ∈ (II Cn 𝐽)) |
45 | 40, 44 | pcoval1 24157 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) →
((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥)))) |
46 | 40, 41 | pcoval1 24157 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) →
((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥)))) |
47 | 45, 46 | eqtr4d 2782 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) →
((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
48 | 39, 47 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4))) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
49 | 48 | anassrs 467 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
50 | 3, 49 | eqtrd 2779 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
51 | 50 | adantlr 711 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
52 | | simplll 771 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝜑) |
53 | 6 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ℝ) |
54 | 53 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℝ) |
55 | | letric 11058 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ (1 / 4)
∈ ℝ) → (𝑥
≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥)) |
56 | 53, 17, 55 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → (𝑥 ≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥)) |
57 | 56 | orcanai 999 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ≤ 𝑥) |
58 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 2)) |
59 | | halfre 12170 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ ℝ |
60 | 17, 59 | elicc2i 13127 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
↔ (𝑥 ∈ ℝ
∧ (1 / 4) ≤ 𝑥 ∧
𝑥 ≤ (1 /
2))) |
61 | 54, 57, 58, 60 | syl3anbrc 1341 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ((1 / 4)[,](1 / 2))) |
62 | 60 | simp1bi 1143 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ 𝑥 ∈
ℝ) |
63 | | readdcl 10938 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ (1 / 4)
∈ ℝ) → (𝑥 +
(1 / 4)) ∈ ℝ) |
64 | 62, 17, 63 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (𝑥 + (1 / 4)) ∈
ℝ) |
65 | 17 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (1 / 4) ∈ ℝ) |
66 | 60 | simp2bi 1144 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (1 / 4) ≤ 𝑥) |
67 | 65, 62, 65, 66 | leadd1dd 11572 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ ((1 / 4) + (1 / 4)) ≤ (𝑥 + (1 / 4))) |
68 | 34, 67 | eqbrtrrid 5114 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (1 / 2) ≤ (𝑥 + (1
/ 4))) |
69 | 59 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (1 / 2) ∈ ℝ) |
70 | 60 | simp3bi 1145 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ 𝑥 ≤ (1 /
2)) |
71 | | 2lt4 12131 |
. . . . . . . . . . . . . . . . 17
⊢ 2 <
4 |
72 | | 2re 12030 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ∈
ℝ |
73 | | 4re 12040 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
ℝ |
74 | | 2pos 12059 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
2 |
75 | | 4pos 12063 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
4 |
76 | 72, 73, 74, 75 | ltrecii 11874 |
. . . . . . . . . . . . . . . . 17
⊢ (2 < 4
↔ (1 / 4) < (1 / 2)) |
77 | 71, 76 | mpbi 229 |
. . . . . . . . . . . . . . . 16
⊢ (1 / 4)
< (1 / 2) |
78 | 17, 59, 77 | ltleii 11081 |
. . . . . . . . . . . . . . 15
⊢ (1 / 4)
≤ (1 / 2) |
79 | 78 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (1 / 4) ≤ (1 / 2)) |
80 | 62, 65, 69, 69, 70, 79 | le2addd 11577 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (𝑥 + (1 / 4)) ≤
((1 / 2) + (1 / 2))) |
81 | | ax-1cn 10913 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
82 | | 2halves 12184 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
ℂ → ((1 / 2) + (1 / 2)) = 1) |
83 | 81, 82 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
+ (1 / 2)) = 1 |
84 | 80, 83 | breqtrdi 5119 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (𝑥 + (1 / 4)) ≤
1) |
85 | | 1re 10959 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ |
86 | 59, 85 | elicc2i 13127 |
. . . . . . . . . . . 12
⊢ ((𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1)
↔ ((𝑥 + (1 / 4))
∈ ℝ ∧ (1 / 2) ≤ (𝑥 + (1 / 4)) ∧ (𝑥 + (1 / 4)) ≤ 1)) |
87 | 64, 68, 84, 86 | syl3anbrc 1341 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (𝑥 + (1 / 4)) ∈
((1 / 2)[,]1)) |
88 | 61, 87 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 + (1 / 4)) ∈ ((1 /
2)[,]1)) |
89 | | pcoass.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) |
90 | 41, 42 | pco0 24158 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐺(*𝑝‘𝐽)𝐻)‘0) = (𝐺‘0)) |
91 | 89, 90 | eqtr4d 2782 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘1) = ((𝐺(*𝑝‘𝐽)𝐻)‘0)) |
92 | 40, 44, 91 | pcoval2 24160 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1)) →
((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1))) |
93 | 52, 88, 92 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1))) |
94 | 83 | oveq2i 7279 |
. . . . . . . . . . . 12
⊢ ((2
· (𝑥 + (1 / 4)))
− ((1 / 2) + (1 / 2))) = ((2 · (𝑥 + (1 / 4))) − 1) |
95 | | 2cnd 12034 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 2 ∈
ℂ) |
96 | 54 | recnd 10987 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℂ) |
97 | 22 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ∈
ℂ) |
98 | 95, 96, 97 | adddid 10983 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 ·
𝑥) + (2 · (1 /
4)))) |
99 | 35 | oveq2i 7279 |
. . . . . . . . . . . . . 14
⊢ ((2
· 𝑥) + (2 ·
(1 / 4))) = ((2 · 𝑥)
+ (1 / 2)) |
100 | 98, 99 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 ·
𝑥) + (1 /
2))) |
101 | 100 | oveq1d 7283 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − ((1 / 2) +
(1 / 2))) = (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 /
2)))) |
102 | 94, 101 | eqtr3id 2793 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = (((2
· 𝑥) + (1 / 2))
− ((1 / 2) + (1 / 2)))) |
103 | | remulcl 10940 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ ∧ 𝑥
∈ ℝ) → (2 · 𝑥) ∈ ℝ) |
104 | 72, 54, 103 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈
ℝ) |
105 | 104 | recnd 10987 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈
ℂ) |
106 | 31 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 2) ∈
ℂ) |
107 | 105, 106,
106 | pnpcan2d 11353 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (((2 · 𝑥) + (1 / 2)) − ((1 / 2) +
(1 / 2))) = ((2 · 𝑥)
− (1 / 2))) |
108 | 102, 107 | eqtrd 2779 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = ((2
· 𝑥) − (1 /
2))) |
109 | 108 | fveq2d 6772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)) = ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · 𝑥) − (1 / 2)))) |
110 | 4, 96, 9 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) = (𝑥 · 2)) |
111 | 81, 4, 24 | divcan1i 11702 |
. . . . . . . . . . . . . . 15
⊢ ((1 / 2)
· 2) = 1 |
112 | 17, 59, 20, 36, 111 | iccdili 13205 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (𝑥 · 2)
∈ ((1 / 2)[,]1)) |
113 | 61, 112 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ ((1 /
2)[,]1)) |
114 | 110, 113 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ((1 /
2)[,]1)) |
115 | 31 | subidi 11275 |
. . . . . . . . . . . . 13
⊢ ((1 / 2)
− (1 / 2)) = 0 |
116 | | 1mhlfehlf 12175 |
. . . . . . . . . . . . 13
⊢ (1
− (1 / 2)) = (1 / 2) |
117 | 59, 85, 59, 115, 116 | iccshftli 13203 |
. . . . . . . . . . . 12
⊢ ((2
· 𝑥) ∈ ((1 /
2)[,]1) → ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 /
2))) |
118 | 114, 117 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · 𝑥) − (1 / 2)) ∈
(0[,](1 / 2))) |
119 | 41, 42 | pcoval1 24157 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((2 · 𝑥) − (1 / 2)) ∈
(0[,](1 / 2))) → ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 /
2))))) |
120 | 52, 118, 119 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 /
2))))) |
121 | 95, 105, 106 | subdid 11414 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2
· 𝑥) − (1 /
2))) = ((2 · (2 · 𝑥)) − (2 · (1 /
2)))) |
122 | 4, 24 | recidi 11689 |
. . . . . . . . . . . . 13
⊢ (2
· (1 / 2)) = 1 |
123 | 122 | oveq2i 7279 |
. . . . . . . . . . . 12
⊢ ((2
· (2 · 𝑥))
− (2 · (1 / 2))) = ((2 · (2 · 𝑥)) − 1) |
124 | 121, 123 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2
· 𝑥) − (1 /
2))) = ((2 · (2 · 𝑥)) − 1)) |
125 | 124 | fveq2d 6772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))) = (𝐺‘((2 · (2 ·
𝑥)) −
1))) |
126 | 120, 125 | eqtrd 2779 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘((2 · (2 · 𝑥)) − 1))) |
127 | 93, 109, 126 | 3eqtrd 2783 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(𝑥 + (1 / 4))) = (𝐺‘((2 · (2 · 𝑥)) − 1))) |
128 | | iffalse 4473 |
. . . . . . . . . 10
⊢ (¬
𝑥 ≤ (1 / 4) →
if(𝑥 ≤ (1 / 4), (2
· 𝑥), (𝑥 + (1 / 4))) = (𝑥 + (1 / 4))) |
129 | 128 | fveq2d 6772 |
. . . . . . . . 9
⊢ (¬
𝑥 ≤ (1 / 4) →
((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(𝑥 + (1 / 4)))) |
130 | 129 | adantl 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘(𝑥 + (1 / 4)))) |
131 | 40, 41, 89 | pcoval2 24160 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (2 · 𝑥) ∈ ((1 / 2)[,]1)) →
((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1))) |
132 | 52, 114, 131 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1))) |
133 | 127, 130,
132 | 3eqtr4d 2789 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
134 | 51, 133 | pm2.61dan 809 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
135 | | iftrue 4470 |
. . . . . . . 8
⊢ (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) |
136 | 135 | fveq2d 6772 |
. . . . . . 7
⊢ (𝑥 ≤ (1 / 2) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))) |
137 | 136 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))) |
138 | | iftrue 4470 |
. . . . . . 7
⊢ (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
139 | 138 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥))) |
140 | 134, 137,
139 | 3eqtr4d 2789 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))) |
141 | | elii2 24080 |
. . . . . . . 8
⊢ ((𝑥 ∈ (0[,]1) ∧ ¬
𝑥 ≤ (1 / 2)) →
𝑥 ∈ ((1 /
2)[,]1)) |
142 | | halfge0 12173 |
. . . . . . . . . . . . . 14
⊢ 0 ≤ (1
/ 2) |
143 | | halflt1 12174 |
. . . . . . . . . . . . . . 15
⊢ (1 / 2)
< 1 |
144 | 59, 85, 143 | ltleii 11081 |
. . . . . . . . . . . . . 14
⊢ (1 / 2)
≤ 1 |
145 | | elicc01 13180 |
. . . . . . . . . . . . . 14
⊢ ((1 / 2)
∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 /
2) ≤ 1)) |
146 | 59, 142, 144, 145 | mpbir3an 1339 |
. . . . . . . . . . . . 13
⊢ (1 / 2)
∈ (0[,]1) |
147 | | 1elunit 13184 |
. . . . . . . . . . . . 13
⊢ 1 ∈
(0[,]1) |
148 | | iccss2 13132 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → ((1 / 2)[,]1) ⊆
(0[,]1)) |
149 | 146, 147,
148 | mp2an 688 |
. . . . . . . . . . . 12
⊢ ((1 /
2)[,]1) ⊆ (0[,]1) |
150 | 149 | sseli 3921 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
𝑥 ∈
(0[,]1)) |
151 | 4, 24 | div0i 11692 |
. . . . . . . . . . . 12
⊢ (0 / 2) =
0 |
152 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ (1 / 2) =
(1 / 2) |
153 | 14, 85, 20, 151, 152 | icccntri 13207 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (0[,]1) → (𝑥 / 2) ∈ (0[,](1 /
2))) |
154 | 31 | addid2i 11146 |
. . . . . . . . . . . 12
⊢ (0 + (1 /
2)) = (1 / 2) |
155 | 14, 59, 59, 154, 83 | iccshftri 13201 |
. . . . . . . . . . 11
⊢ ((𝑥 / 2) ∈ (0[,](1 / 2))
→ ((𝑥 / 2) + (1 / 2))
∈ ((1 / 2)[,]1)) |
156 | 150, 153,
155 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
((𝑥 / 2) + (1 / 2)) ∈
((1 / 2)[,]1)) |
157 | 40, 44, 91 | pcoval2 24160 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1)) →
((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) −
1))) |
158 | 156, 157 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) −
1))) |
159 | 59, 85 | elicc2i 13127 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 2)[,]1) ↔
(𝑥 ∈ ℝ ∧ (1
/ 2) ≤ 𝑥 ∧ 𝑥 ≤ 1)) |
160 | 159 | simp1bi 1143 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
𝑥 ∈
ℝ) |
161 | 160 | recnd 10987 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
𝑥 ∈
ℂ) |
162 | | 1cnd 10954 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 2)[,]1) → 1
∈ ℂ) |
163 | | 2cnd 12034 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((1 / 2)[,]1) → 2
∈ ℂ) |
164 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((1 / 2)[,]1) → 2
≠ 0) |
165 | 161, 162,
163, 164 | divdird 11772 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
((𝑥 + 1) / 2) = ((𝑥 / 2) + (1 /
2))) |
166 | 165 | oveq2d 7284 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((1 / 2)[,]1) → (2
· ((𝑥 + 1) / 2)) =
(2 · ((𝑥 / 2) + (1 /
2)))) |
167 | | peano2cn 11130 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → (𝑥 + 1) ∈
ℂ) |
168 | 161, 167 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
(𝑥 + 1) ∈
ℂ) |
169 | 168, 163,
164 | divcan2d 11736 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((1 / 2)[,]1) → (2
· ((𝑥 + 1) / 2)) =
(𝑥 + 1)) |
170 | 166, 169 | eqtr3d 2781 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 2)[,]1) → (2
· ((𝑥 / 2) + (1 /
2))) = (𝑥 +
1)) |
171 | 161, 162,
170 | mvrraddd 11370 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((1 / 2)[,]1) → ((2
· ((𝑥 / 2) + (1 /
2))) − 1) = 𝑥) |
172 | 171 | fveq2d 6772 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
((𝐺(*𝑝‘𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝‘𝐽)𝐻)‘𝑥)) |
173 | 172 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝‘𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝‘𝐽)𝐻)‘𝑥)) |
174 | 41, 42, 43 | pcoval2 24160 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝‘𝐽)𝐻)‘𝑥) = (𝐻‘((2 · 𝑥) − 1))) |
175 | 158, 173,
174 | 3eqtrd 2783 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1))) |
176 | 141, 175 | sylan2 592 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1))) |
177 | 176 | anassrs 467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1))) |
178 | | iffalse 4473 |
. . . . . . . 8
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2))) |
179 | 178 | fveq2d 6772 |
. . . . . . 7
⊢ (¬
𝑥 ≤ (1 / 2) →
((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘((𝑥 / 2) + (1 / 2)))) |
180 | 179 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘((𝑥 / 2) + (1 / 2)))) |
181 | | iffalse 4473 |
. . . . . . 7
⊢ (¬
𝑥 ≤ (1 / 2) →
if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1))) |
182 | 181 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1))) |
183 | 177, 180,
182 | 3eqtr4d 2789 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))) |
184 | 140, 183 | pm2.61dan 809 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))) |
185 | 184 | mpteq2dva 5178 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))) |
186 | | pcoass.7 |
. . . . . . 7
⊢ 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) |
187 | | iitopon 24023 |
. . . . . . . . 9
⊢ II ∈
(TopOn‘(0[,]1)) |
188 | 187 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → II ∈
(TopOn‘(0[,]1))) |
189 | 188 | cnmptid 22793 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II)) |
190 | | 0elunit 13183 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]1) |
191 | 190 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
(0[,]1)) |
192 | 188, 188,
191 | cnmptc 22794 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn
II)) |
193 | | eqid 2739 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
194 | | eqid 2739 |
. . . . . . . . 9
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) =
((topGen‘ran (,)) ↾t (0[,](1 / 2))) |
195 | | eqid 2739 |
. . . . . . . . 9
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) =
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) |
196 | | dfii2 24026 |
. . . . . . . . 9
⊢ II =
((topGen‘ran (,)) ↾t (0[,]1)) |
197 | | 0red 10962 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
198 | | 1red 10960 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℝ) |
199 | 146 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 2) ∈
(0[,]1)) |
200 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2)) |
201 | 200 | oveq1d 7283 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 2) + (1 /
4))) |
202 | 31, 22 | addcomi 11149 |
. . . . . . . . . . 11
⊢ ((1 / 2)
+ (1 / 4)) = ((1 / 4) + (1 / 2)) |
203 | 201, 202 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 /
2))) |
204 | 17, 59 | ltnlei 11079 |
. . . . . . . . . . . . 13
⊢ ((1 / 4)
< (1 / 2) ↔ ¬ (1 / 2) ≤ (1 / 4)) |
205 | 77, 204 | mpbi 229 |
. . . . . . . . . . . 12
⊢ ¬ (1
/ 2) ≤ (1 / 4) |
206 | 200 | breq1d 5088 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 ≤ (1 / 4) ↔ (1 / 2) ≤ (1 /
4))) |
207 | 205, 206 | mtbiri 326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ¬ 𝑦 ≤ (1 / 4)) |
208 | 207 | iffalsed 4475 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = (𝑦 + (1 / 4))) |
209 | 200 | oveq1d 7283 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = ((1 / 2) / 2)) |
210 | 209, 29 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = (1 / 4)) |
211 | 210 | oveq1d 7283 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((𝑦 / 2) + (1 / 2)) = ((1 / 4) + (1 /
2))) |
212 | 203, 208,
211 | 3eqtr4d 2789 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = ((𝑦 / 2) + (1 / 2))) |
213 | | eqid 2739 |
. . . . . . . . . 10
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 4))) =
((topGen‘ran (,)) ↾t (0[,](1 / 4))) |
214 | | eqid 2739 |
. . . . . . . . . 10
⊢
((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) =
((topGen‘ran (,)) ↾t ((1 / 4)[,](1 /
2))) |
215 | 59 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
216 | 73, 75 | recgt0ii 11864 |
. . . . . . . . . . . . 13
⊢ 0 < (1
/ 4) |
217 | 14, 17, 216 | ltleii 11081 |
. . . . . . . . . . . 12
⊢ 0 ≤ (1
/ 4) |
218 | 14, 59 | elicc2i 13127 |
. . . . . . . . . . . 12
⊢ ((1 / 4)
∈ (0[,](1 / 2)) ↔ ((1 / 4) ∈ ℝ ∧ 0 ≤ (1 / 4) ∧
(1 / 4) ≤ (1 / 2))) |
219 | 17, 217, 78, 218 | mpbir3an 1339 |
. . . . . . . . . . 11
⊢ (1 / 4)
∈ (0[,](1 / 2)) |
220 | 219 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (1 / 4) ∈ (0[,](1 /
2))) |
221 | | simprl 767 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 4)) |
222 | 221 | oveq2d 7284 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 /
4))) |
223 | 221 | oveq1d 7283 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 /
4))) |
224 | 23, 222, 223 | 3eqtr4a 2805 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (𝑦 + (1 / 4))) |
225 | | retopon 23908 |
. . . . . . . . . . . . 13
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
226 | | 0xr 11006 |
. . . . . . . . . . . . . . . 16
⊢ 0 ∈
ℝ* |
227 | 59 | rexri 11017 |
. . . . . . . . . . . . . . . 16
⊢ (1 / 2)
∈ ℝ* |
228 | | lbicc2 13178 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ ℝ* ∧ (1 / 2) ∈ ℝ* ∧ 0
≤ (1 / 2)) → 0 ∈ (0[,](1 / 2))) |
229 | 226, 227,
142, 228 | mp3an 1459 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
(0[,](1 / 2)) |
230 | | iccss2 13132 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ (0[,](1 / 2)) ∧ (1 / 4) ∈ (0[,](1 / 2))) → (0[,](1 / 4))
⊆ (0[,](1 / 2))) |
231 | 229, 219,
230 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢ (0[,](1 /
4)) ⊆ (0[,](1 / 2)) |
232 | | iccssre 13143 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆
ℝ) |
233 | 14, 59, 232 | mp2an 688 |
. . . . . . . . . . . . . 14
⊢ (0[,](1 /
2)) ⊆ ℝ |
234 | 231, 233 | sstri 3934 |
. . . . . . . . . . . . 13
⊢ (0[,](1 /
4)) ⊆ ℝ |
235 | | resttopon 22293 |
. . . . . . . . . . . . 13
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
4)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 4))) ∈ (TopOn‘(0[,](1 / 4)))) |
236 | 225, 234,
235 | mp2an 688 |
. . . . . . . . . . . 12
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈
(TopOn‘(0[,](1 / 4))) |
237 | 236 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ((topGen‘ran (,))
↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 /
4)))) |
238 | 237, 188 | cnmpt1st 22800 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t (0[,](1 / 4))) ×t II) Cn
((topGen‘ran (,)) ↾t (0[,](1 / 4))))) |
239 | | retop 23906 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) ∈ Top |
240 | | ovex 7301 |
. . . . . . . . . . . . . 14
⊢ (0[,](1 /
2)) ∈ V |
241 | | restabs 22297 |
. . . . . . . . . . . . . 14
⊢
(((topGen‘ran (,)) ∈ Top ∧ (0[,](1 / 4)) ⊆ (0[,](1
/ 2)) ∧ (0[,](1 / 2)) ∈ V) → (((topGen‘ran (,))
↾t (0[,](1 / 2))) ↾t (0[,](1 / 4))) =
((topGen‘ran (,)) ↾t (0[,](1 / 4)))) |
242 | 239, 231,
240, 241 | mp3an 1459 |
. . . . . . . . . . . . 13
⊢
(((topGen‘ran (,)) ↾t (0[,](1 / 2)))
↾t (0[,](1 / 4))) = ((topGen‘ran (,))
↾t (0[,](1 / 4))) |
243 | 242 | eqcomi 2748 |
. . . . . . . . . . . 12
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 4))) =
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t
(0[,](1 / 4))) |
244 | | resttopon 22293 |
. . . . . . . . . . . . . 14
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 /
2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1
/ 2))) ∈ (TopOn‘(0[,](1 / 2)))) |
245 | 225, 233,
244 | mp2an 688 |
. . . . . . . . . . . . 13
⊢
((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈
(TopOn‘(0[,](1 / 2))) |
246 | 245 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((topGen‘ran (,))
↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 /
2)))) |
247 | 231 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0[,](1 / 4)) ⊆
(0[,](1 / 2))) |
248 | 194 | iihalf1cn 24076 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0[,](1 / 2)) ↦ (2
· 𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II) |
249 | 248 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 ·
𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn
II)) |
250 | 243, 246,
247, 249 | cnmpt1res 22808 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ (0[,](1 / 4)) ↦ (2 ·
𝑥)) ∈
(((topGen‘ran (,)) ↾t (0[,](1 / 4))) Cn
II)) |
251 | | oveq2 7276 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦)) |
252 | 237, 188,
238, 237, 250, 251 | cnmpt21 22803 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran
(,)) ↾t (0[,](1 / 4))) ×t II) Cn
II)) |
253 | | iccssre 13143 |
. . . . . . . . . . . . . 14
⊢ (((1 / 4)
∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((1 / 4)[,](1 / 2)) ⊆
ℝ) |
254 | 17, 59, 253 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ ((1 /
4)[,](1 / 2)) ⊆ ℝ |
255 | | resttopon 22293 |
. . . . . . . . . . . . 13
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
4)[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,))
↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 /
2)))) |
256 | 225, 254,
255 | mp2an 688 |
. . . . . . . . . . . 12
⊢
((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈
(TopOn‘((1 / 4)[,](1 / 2))) |
257 | 256 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ((topGen‘ran (,))
↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 /
2)))) |
258 | 257, 188 | cnmpt1st 22800 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran
(,)) ↾t ((1 / 4)[,](1 / 2))) ×t II) Cn
((topGen‘ran (,)) ↾t ((1 / 4)[,](1 /
2))))) |
259 | | eqid 2739 |
. . . . . . . . . . . 12
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
260 | 254 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((1 / 4)[,](1 / 2))
⊆ ℝ) |
261 | | unitssre 13213 |
. . . . . . . . . . . . 13
⊢ (0[,]1)
⊆ ℝ |
262 | 261 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0[,]1) ⊆
ℝ) |
263 | 149, 87 | sselid 3923 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ((1 / 4)[,](1 / 2))
→ (𝑥 + (1 / 4)) ∈
(0[,]1)) |
264 | 263 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ((1 / 4)[,](1 / 2))) → (𝑥 + (1 / 4)) ∈
(0[,]1)) |
265 | 259 | cnfldtopon 23927 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
266 | 265 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
267 | 266 | cnmptid 22793 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
268 | 17 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (1 / 4) ∈
ℝ) |
269 | 268 | recnd 10987 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1 / 4) ∈
ℂ) |
270 | 266, 266,
269 | cnmptc 22794 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 4)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
271 | 259 | addcn 24009 |
. . . . . . . . . . . . . 14
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
272 | 271 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
273 | 266, 267,
270, 272 | cnmpt12f 22798 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 + (1 / 4))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
274 | 259, 214,
196, 260, 262, 264, 273 | cnmptre 24071 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ((1 / 4)[,](1 / 2)) ↦ (𝑥 + (1 / 4))) ∈
(((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) Cn
II)) |
275 | | oveq1 7275 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 + (1 / 4)) = (𝑦 + (1 / 4))) |
276 | 257, 188,
258, 257, 274, 275 | cnmpt21 22803 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝑦 + (1 / 4))) ∈
((((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2)))
×t II) Cn II)) |
277 | 193, 213,
214, 194, 197, 215, 220, 188, 224, 252, 276 | cnmpopc 24072 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4)))) ∈ ((((topGen‘ran
(,)) ↾t (0[,](1 / 2))) ×t II) Cn
II)) |
278 | | iccssre 13143 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆
ℝ) |
279 | 59, 85, 278 | mp2an 688 |
. . . . . . . . . . . 12
⊢ ((1 /
2)[,]1) ⊆ ℝ |
280 | | resttopon 22293 |
. . . . . . . . . . . 12
⊢
(((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 /
2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1
/ 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))) |
281 | 225, 279,
280 | mp2an 688 |
. . . . . . . . . . 11
⊢
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈
(TopOn‘((1 / 2)[,]1)) |
282 | 281 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 /
2)[,]1))) |
283 | 282, 188 | cnmpt1st 22800 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,))
↾t ((1 / 2)[,]1)) ×t II) Cn
((topGen‘ran (,)) ↾t ((1 / 2)[,]1)))) |
284 | 279 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ((1 / 2)[,]1) ⊆
ℝ) |
285 | 149, 156 | sselid 3923 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((1 / 2)[,]1) →
((𝑥 / 2) + (1 / 2)) ∈
(0[,]1)) |
286 | 285 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ((1 / 2)[,]1)) → ((𝑥 / 2) + (1 / 2)) ∈
(0[,]1)) |
287 | 259 | divccn 24017 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℂ ∧ 2 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
288 | 4, 24, 287 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld)) |
289 | 288 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
290 | 31 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
291 | 266, 266,
290 | cnmptc 22794 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 2)) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
292 | 266, 289,
291, 272 | cnmpt12f 22798 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥 / 2) + (1 / 2))) ∈
((TopOpen‘ℂfld) Cn
(TopOpen‘ℂfld))) |
293 | 259, 195,
196, 284, 262, 286, 292 | cnmptre 24071 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((𝑥 / 2) + (1 / 2))) ∈
(((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn
II)) |
294 | | oveq1 7275 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 / 2) = (𝑦 / 2)) |
295 | 294 | oveq1d 7283 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥 / 2) + (1 / 2)) = ((𝑦 / 2) + (1 / 2))) |
296 | 282, 188,
283, 282, 293, 295 | cnmpt21 22803 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((𝑦 / 2) + (1 / 2))) ∈ ((((topGen‘ran
(,)) ↾t ((1 / 2)[,]1)) ×t II) Cn
II)) |
297 | 193, 194,
195, 196, 197, 198, 199, 188, 212, 277, 296 | cnmpopc 24072 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) ∈ ((II
×t II) Cn II)) |
298 | | breq1 5081 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ≤ (1 / 2) ↔ 𝑦 ≤ (1 / 2))) |
299 | | breq1 5081 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝑥 ≤ (1 / 4) ↔ 𝑦 ≤ (1 / 4))) |
300 | 299, 251,
275 | ifbieq12d 4492 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4)))) |
301 | 298, 300,
295 | ifbieq12d 4492 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) |
302 | 301 | equcoms 2026 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) |
303 | 302 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 0) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) |
304 | 303 | eqcomd 2745 |
. . . . . . . 8
⊢ ((𝑦 = 𝑥 ∧ 𝑧 = 0) → if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) |
305 | 188, 189,
192, 188, 188, 297, 304 | cnmpt12 22799 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) ∈ (II Cn
II)) |
306 | 186, 305 | eqeltrid 2844 |
. . . . . 6
⊢ (𝜑 → 𝑃 ∈ (II Cn II)) |
307 | | iiuni 24025 |
. . . . . . 7
⊢ (0[,]1) =
∪ II |
308 | 307, 307 | cnf 22378 |
. . . . . 6
⊢ (𝑃 ∈ (II Cn II) → 𝑃:(0[,]1)⟶(0[,]1)) |
309 | 306, 308 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃:(0[,]1)⟶(0[,]1)) |
310 | 186 | fmpt 6978 |
. . . . 5
⊢
(∀𝑥 ∈
(0[,]1)if(𝑥 ≤ (1 / 2),
if(𝑥 ≤ (1 / 4), (2
· 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈ (0[,]1)
↔ 𝑃:(0[,]1)⟶(0[,]1)) |
311 | 309, 310 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈
(0[,]1)) |
312 | 186 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))) |
313 | 40, 44, 91 | pcocn 24161 |
. . . . . 6
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)) ∈ (II Cn 𝐽)) |
314 | | eqid 2739 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
315 | 307, 314 | cnf 22378 |
. . . . . 6
⊢ ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)) ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)):(0[,]1)⟶∪ 𝐽) |
316 | 313, 315 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)):(0[,]1)⟶∪ 𝐽) |
317 | 316 | feqmptd 6831 |
. . . 4
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)) = (𝑦 ∈ (0[,]1) ↦ ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘𝑦))) |
318 | | fveq2 6768 |
. . . 4
⊢ (𝑦 = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘𝑦) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))) |
319 | 311, 312,
317, 318 | fmptcof 6996 |
. . 3
⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)) ∘ 𝑃) = (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))))) |
320 | 40, 41, 89 | pcocn 24161 |
. . . 4
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) |
321 | 320, 42 | pcoval 24155 |
. . 3
⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(*𝑝‘𝐽)𝐻) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝‘𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))) |
322 | 185, 319,
321 | 3eqtr4rd 2790 |
. 2
⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(*𝑝‘𝐽)𝐻) = ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)) ∘ 𝑃)) |
323 | | id 22 |
. . . . . . . 8
⊢ (𝑥 = 0 → 𝑥 = 0) |
324 | 323, 142 | eqbrtrdi 5117 |
. . . . . . 7
⊢ (𝑥 = 0 → 𝑥 ≤ (1 / 2)) |
325 | 324 | iftrued 4472 |
. . . . . 6
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) |
326 | 323, 217 | eqbrtrdi 5117 |
. . . . . . 7
⊢ (𝑥 = 0 → 𝑥 ≤ (1 / 4)) |
327 | 326 | iftrued 4472 |
. . . . . 6
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥)) |
328 | | oveq2 7276 |
. . . . . . 7
⊢ (𝑥 = 0 → (2 · 𝑥) = (2 ·
0)) |
329 | | 2t0e0 12125 |
. . . . . . 7
⊢ (2
· 0) = 0 |
330 | 328, 329 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑥 = 0 → (2 · 𝑥) = 0) |
331 | 325, 327,
330 | 3eqtrd 2783 |
. . . . 5
⊢ (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 0) |
332 | | c0ex 10953 |
. . . . 5
⊢ 0 ∈
V |
333 | 331, 186,
332 | fvmpt 6869 |
. . . 4
⊢ (0 ∈
(0[,]1) → (𝑃‘0)
= 0) |
334 | 191, 333 | syl 17 |
. . 3
⊢ (𝜑 → (𝑃‘0) = 0) |
335 | 147 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
(0[,]1)) |
336 | 59, 85 | ltnlei 11079 |
. . . . . . . . 9
⊢ ((1 / 2)
< 1 ↔ ¬ 1 ≤ (1 / 2)) |
337 | 143, 336 | mpbi 229 |
. . . . . . . 8
⊢ ¬ 1
≤ (1 / 2) |
338 | | breq1 5081 |
. . . . . . . 8
⊢ (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 /
2))) |
339 | 337, 338 | mtbiri 326 |
. . . . . . 7
⊢ (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2)) |
340 | 339 | iffalsed 4475 |
. . . . . 6
⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2))) |
341 | | oveq1 7275 |
. . . . . . . 8
⊢ (𝑥 = 1 → (𝑥 / 2) = (1 / 2)) |
342 | 341 | oveq1d 7283 |
. . . . . . 7
⊢ (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = ((1 / 2) + (1 /
2))) |
343 | 342, 83 | eqtrdi 2795 |
. . . . . 6
⊢ (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = 1) |
344 | 340, 343 | eqtrd 2779 |
. . . . 5
⊢ (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 1) |
345 | | 1ex 10955 |
. . . . 5
⊢ 1 ∈
V |
346 | 344, 186,
345 | fvmpt 6869 |
. . . 4
⊢ (1 ∈
(0[,]1) → (𝑃‘1)
= 1) |
347 | 335, 346 | syl 17 |
. . 3
⊢ (𝜑 → (𝑃‘1) = 1) |
348 | 313, 306,
334, 347 | reparpht 24142 |
. 2
⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻)) ∘ 𝑃)( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))) |
349 | 322, 348 | eqbrtrd 5100 |
1
⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(*𝑝‘𝐽)𝐻)( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))) |