MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoass Structured version   Visualization version   GIF version

Theorem pcoass 23630
Description: Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcoass.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoass.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoass.4 (𝜑𝐻 ∈ (II Cn 𝐽))
pcoass.5 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcoass.6 (𝜑 → (𝐺‘1) = (𝐻‘0))
pcoass.7 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
Assertion
Ref Expression
pcoass (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝑥,𝐽   𝜑,𝑥
Allowed substitution hint:   𝑃(𝑥)

Proof of Theorem pcoass
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4475 . . . . . . . . . . 11 (𝑥 ≤ (1 / 4) → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥))
21fveq2d 6676 . . . . . . . . . 10 (𝑥 ≤ (1 / 4) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)))
32adantl 484 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)))
4 2cn 11715 . . . . . . . . . . . . 13 2 ∈ ℂ
5 elicc01 12857 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
65simp1bi 1141 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
76adantr 483 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℝ)
87recnd 10671 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℂ)
9 mulcom 10625 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) = (𝑥 · 2))
104, 8, 9sylancr 589 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) = (𝑥 · 2))
115simp2bi 1142 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) → 0 ≤ 𝑥)
1211adantr 483 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 0 ≤ 𝑥)
13 simpr 487 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 4))
14 0re 10645 . . . . . . . . . . . . . . 15 0 ∈ ℝ
15 4nn 11723 . . . . . . . . . . . . . . . 16 4 ∈ ℕ
16 nnrecre 11682 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
1715, 16ax-mp 5 . . . . . . . . . . . . . . 15 (1 / 4) ∈ ℝ
1814, 17elicc2i 12805 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,](1 / 4)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ (1 / 4)))
197, 12, 13, 18syl3anbrc 1339 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ (0[,](1 / 4)))
20 2rp 12397 . . . . . . . . . . . . . 14 2 ∈ ℝ+
214mul02i 10831 . . . . . . . . . . . . . 14 (0 · 2) = 0
2217recni 10657 . . . . . . . . . . . . . . 15 (1 / 4) ∈ ℂ
23222timesi 11778 . . . . . . . . . . . . . . . 16 (2 · (1 / 4)) = ((1 / 4) + (1 / 4))
24 2ne0 11744 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
25 recdiv2 11355 . . . . . . . . . . . . . . . . . . . 20 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) / 2) = (1 / (2 · 2)))
264, 24, 4, 24, 25mp4an 691 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) / 2) = (1 / (2 · 2))
27 2t2e4 11804 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
2827oveq2i 7169 . . . . . . . . . . . . . . . . . . 19 (1 / (2 · 2)) = (1 / 4)
2926, 28eqtri 2846 . . . . . . . . . . . . . . . . . 18 ((1 / 2) / 2) = (1 / 4)
3029, 29oveq12i 7170 . . . . . . . . . . . . . . . . 17 (((1 / 2) / 2) + ((1 / 2) / 2)) = ((1 / 4) + (1 / 4))
31 halfcn 11855 . . . . . . . . . . . . . . . . . 18 (1 / 2) ∈ ℂ
32 2halves 11868 . . . . . . . . . . . . . . . . . 18 ((1 / 2) ∈ ℂ → (((1 / 2) / 2) + ((1 / 2) / 2)) = (1 / 2))
3331, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 (((1 / 2) / 2) + ((1 / 2) / 2)) = (1 / 2)
3430, 33eqtr3i 2848 . . . . . . . . . . . . . . . 16 ((1 / 4) + (1 / 4)) = (1 / 2)
3523, 34eqtri 2846 . . . . . . . . . . . . . . 15 (2 · (1 / 4)) = (1 / 2)
364, 22, 35mulcomli 10652 . . . . . . . . . . . . . 14 ((1 / 4) · 2) = (1 / 2)
3714, 17, 20, 21, 36iccdili 12880 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,](1 / 4)) → (𝑥 · 2) ∈ (0[,](1 / 2)))
3819, 37syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ (0[,](1 / 2)))
3910, 38eqeltrd 2915 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ (0[,](1 / 2)))
40 pcoass.2 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (II Cn 𝐽))
41 pcoass.3 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (II Cn 𝐽))
42 pcoass.4 . . . . . . . . . . . . . 14 (𝜑𝐻 ∈ (II Cn 𝐽))
43 pcoass.6 . . . . . . . . . . . . . 14 (𝜑 → (𝐺‘1) = (𝐻‘0))
4441, 42, 43pcocn 23623 . . . . . . . . . . . . 13 (𝜑 → (𝐺(*𝑝𝐽)𝐻) ∈ (II Cn 𝐽))
4540, 44pcoval1 23619 . . . . . . . . . . . 12 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥))))
4640, 41pcoval1 23619 . . . . . . . . . . . 12 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥))))
4745, 46eqtr4d 2861 . . . . . . . . . . 11 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
4839, 47sylan2 594 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
4948anassrs 470 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
503, 49eqtrd 2858 . . . . . . . 8 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
5150adantlr 713 . . . . . . 7 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
52 simplll 773 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝜑)
536ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ℝ)
5453adantr 483 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℝ)
55 letric 10742 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (1 / 4) ∈ ℝ) → (𝑥 ≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥))
5653, 17, 55sylancl 588 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → (𝑥 ≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥))
5756orcanai 999 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ≤ 𝑥)
58 simplr 767 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 2))
59 halfre 11854 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
6017, 59elicc2i 12805 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) ↔ (𝑥 ∈ ℝ ∧ (1 / 4) ≤ 𝑥𝑥 ≤ (1 / 2)))
6154, 57, 58, 60syl3anbrc 1339 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ((1 / 4)[,](1 / 2)))
6260simp1bi 1141 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → 𝑥 ∈ ℝ)
63 readdcl 10622 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (1 / 4) ∈ ℝ) → (𝑥 + (1 / 4)) ∈ ℝ)
6462, 17, 63sylancl 588 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ ℝ)
6517a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ∈ ℝ)
6660simp2bi 1142 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ≤ 𝑥)
6765, 62, 65, 66leadd1dd 11256 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → ((1 / 4) + (1 / 4)) ≤ (𝑥 + (1 / 4)))
6834, 67eqbrtrrid 5104 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 2) ≤ (𝑥 + (1 / 4)))
6959a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 2) ∈ ℝ)
7060simp3bi 1143 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → 𝑥 ≤ (1 / 2))
71 2lt4 11815 . . . . . . . . . . . . . . . . 17 2 < 4
72 2re 11714 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
73 4re 11724 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
74 2pos 11743 . . . . . . . . . . . . . . . . . 18 0 < 2
75 4pos 11747 . . . . . . . . . . . . . . . . . 18 0 < 4
7672, 73, 74, 75ltrecii 11558 . . . . . . . . . . . . . . . . 17 (2 < 4 ↔ (1 / 4) < (1 / 2))
7771, 76mpbi 232 . . . . . . . . . . . . . . . 16 (1 / 4) < (1 / 2)
7817, 59, 77ltleii 10765 . . . . . . . . . . . . . . 15 (1 / 4) ≤ (1 / 2)
7978a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ≤ (1 / 2))
8062, 65, 69, 69, 70, 79le2addd 11261 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ≤ ((1 / 2) + (1 / 2)))
81 ax-1cn 10597 . . . . . . . . . . . . . 14 1 ∈ ℂ
82 2halves 11868 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8381, 82ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8480, 83breqtrdi 5109 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ≤ 1)
85 1re 10643 . . . . . . . . . . . . 13 1 ∈ ℝ
8659, 85elicc2i 12805 . . . . . . . . . . . 12 ((𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1) ↔ ((𝑥 + (1 / 4)) ∈ ℝ ∧ (1 / 2) ≤ (𝑥 + (1 / 4)) ∧ (𝑥 + (1 / 4)) ≤ 1))
8764, 68, 84, 86syl3anbrc 1339 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1))
8861, 87syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1))
89 pcoass.5 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1) = (𝐺‘0))
9041, 42pco0 23620 . . . . . . . . . . . 12 (𝜑 → ((𝐺(*𝑝𝐽)𝐻)‘0) = (𝐺‘0))
9189, 90eqtr4d 2861 . . . . . . . . . . 11 (𝜑 → (𝐹‘1) = ((𝐺(*𝑝𝐽)𝐻)‘0))
9240, 44, 91pcoval2 23622 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)))
9352, 88, 92syl2anc 586 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)))
9483oveq2i 7169 . . . . . . . . . . . 12 ((2 · (𝑥 + (1 / 4))) − ((1 / 2) + (1 / 2))) = ((2 · (𝑥 + (1 / 4))) − 1)
95 2cnd 11718 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 2 ∈ ℂ)
9654recnd 10671 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℂ)
9722a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ∈ ℂ)
9895, 96, 97adddid 10667 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 · 𝑥) + (2 · (1 / 4))))
9935oveq2i 7169 . . . . . . . . . . . . . 14 ((2 · 𝑥) + (2 · (1 / 4))) = ((2 · 𝑥) + (1 / 2))
10098, 99syl6eq 2874 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 · 𝑥) + (1 / 2)))
101100oveq1d 7173 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − ((1 / 2) + (1 / 2))) = (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))))
10294, 101syl5eqr 2872 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))))
103 remulcl 10624 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
10472, 54, 103sylancr 589 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ℝ)
105104recnd 10671 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ℂ)
10631a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 2) ∈ ℂ)
107105, 106, 106pnpcan2d 11037 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))) = ((2 · 𝑥) − (1 / 2)))
108102, 107eqtrd 2858 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = ((2 · 𝑥) − (1 / 2)))
109108fveq2d 6676 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))))
1104, 96, 9sylancr 589 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) = (𝑥 · 2))
11181, 4, 24divcan1i 11386 . . . . . . . . . . . . . . 15 ((1 / 2) · 2) = 1
11217, 59, 20, 36, 111iccdili 12880 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 · 2) ∈ ((1 / 2)[,]1))
11361, 112syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ ((1 / 2)[,]1))
114110, 113eqeltrd 2915 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ((1 / 2)[,]1))
11531subidi 10959 . . . . . . . . . . . . 13 ((1 / 2) − (1 / 2)) = 0
116 1mhlfehlf 11859 . . . . . . . . . . . . 13 (1 − (1 / 2)) = (1 / 2)
11759, 85, 59, 115, 116iccshftli 12878 . . . . . . . . . . . 12 ((2 · 𝑥) ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2)))
118114, 117syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2)))
11941, 42pcoval1 23619 . . . . . . . . . . 11 ((𝜑 ∧ ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2))) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))))
12052, 118, 119syl2anc 586 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))))
12195, 105, 106subdid 11098 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2 · 𝑥) − (1 / 2))) = ((2 · (2 · 𝑥)) − (2 · (1 / 2))))
1224, 24recidi 11373 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
123122oveq2i 7169 . . . . . . . . . . . 12 ((2 · (2 · 𝑥)) − (2 · (1 / 2))) = ((2 · (2 · 𝑥)) − 1)
124121, 123syl6eq 2874 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2 · 𝑥) − (1 / 2))) = ((2 · (2 · 𝑥)) − 1))
125124fveq2d 6676 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
126120, 125eqtrd 2858 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
12793, 109, 1263eqtrd 2862 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
128 iffalse 4478 . . . . . . . . . 10 𝑥 ≤ (1 / 4) → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (𝑥 + (1 / 4)))
129128fveq2d 6676 . . . . . . . . 9 𝑥 ≤ (1 / 4) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))))
130129adantl 484 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))))
13140, 41, 89pcoval2 23622 . . . . . . . . 9 ((𝜑 ∧ (2 · 𝑥) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
13252, 114, 131syl2anc 586 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
133127, 130, 1323eqtr4d 2868 . . . . . . 7 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
13451, 133pm2.61dan 811 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
135 iftrue 4475 . . . . . . . 8 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))
136135fveq2d 6676 . . . . . . 7 (𝑥 ≤ (1 / 2) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))))
137136adantl 484 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))))
138 iftrue 4475 . . . . . . 7 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
139138adantl 484 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
140134, 137, 1393eqtr4d 2868 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
141 elii2 23542 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
142 halfge0 11857 . . . . . . . . . . . . . 14 0 ≤ (1 / 2)
143 halflt1 11858 . . . . . . . . . . . . . . 15 (1 / 2) < 1
14459, 85, 143ltleii 10765 . . . . . . . . . . . . . 14 (1 / 2) ≤ 1
145 elicc01 12857 . . . . . . . . . . . . . 14 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
14659, 142, 144, 145mpbir3an 1337 . . . . . . . . . . . . 13 (1 / 2) ∈ (0[,]1)
147 1elunit 12859 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
148 iccss2 12810 . . . . . . . . . . . . 13 (((1 / 2) ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
149146, 147, 148mp2an 690 . . . . . . . . . . . 12 ((1 / 2)[,]1) ⊆ (0[,]1)
150149sseli 3965 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ (0[,]1))
1514, 24div0i 11376 . . . . . . . . . . . 12 (0 / 2) = 0
152 eqid 2823 . . . . . . . . . . . 12 (1 / 2) = (1 / 2)
15314, 85, 20, 151, 152icccntri 12882 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) → (𝑥 / 2) ∈ (0[,](1 / 2)))
15431addid2i 10830 . . . . . . . . . . . 12 (0 + (1 / 2)) = (1 / 2)
15514, 59, 59, 154, 83iccshftri 12876 . . . . . . . . . . 11 ((𝑥 / 2) ∈ (0[,](1 / 2)) → ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1))
156150, 153, 1553syl 18 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1))
15740, 44, 91pcoval2 23622 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)))
158156, 157sylan2 594 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)))
15959, 85elicc2i 12805 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) ↔ (𝑥 ∈ ℝ ∧ (1 / 2) ≤ 𝑥𝑥 ≤ 1))
160159simp1bi 1141 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ ℝ)
161160recnd 10671 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ ℂ)
162 1cnd 10638 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → 1 ∈ ℂ)
163 2cnd 11718 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((1 / 2)[,]1) → 2 ∈ ℂ)
16424a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((1 / 2)[,]1) → 2 ≠ 0)
165161, 162, 163, 164divdird 11456 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 + 1) / 2) = ((𝑥 / 2) + (1 / 2)))
166165oveq2d 7174 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 + 1) / 2)) = (2 · ((𝑥 / 2) + (1 / 2))))
167 peano2cn 10814 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ)
168161, 167syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) → (𝑥 + 1) ∈ ℂ)
169168, 163, 164divcan2d 11420 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 + 1) / 2)) = (𝑥 + 1))
170166, 169eqtr3d 2860 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 / 2) + (1 / 2))) = (𝑥 + 1))
171161, 162, 170mvrraddd 11054 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · ((𝑥 / 2) + (1 / 2))) − 1) = 𝑥)
172171fveq2d 6676 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘𝑥))
173172adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘𝑥))
17441, 42, 43pcoval2 23622 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝𝐽)𝐻)‘𝑥) = (𝐻‘((2 · 𝑥) − 1)))
175158, 173, 1743eqtrd 2862 . . . . . . . 8 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
176141, 175sylan2 594 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
177176anassrs 470 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
178 iffalse 4478 . . . . . . . 8 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2)))
179178fveq2d 6676 . . . . . . 7 𝑥 ≤ (1 / 2) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))))
180179adantl 484 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))))
181 iffalse 4478 . . . . . . 7 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1)))
182181adantl 484 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1)))
183177, 180, 1823eqtr4d 2868 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
184140, 183pm2.61dan 811 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
185184mpteq2dva 5163 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))))
186 pcoass.7 . . . . . . 7 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
187 iitopon 23489 . . . . . . . . 9 II ∈ (TopOn‘(0[,]1))
188187a1i 11 . . . . . . . 8 (𝜑 → II ∈ (TopOn‘(0[,]1)))
189188cnmptid 22271 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
190 0elunit 12858 . . . . . . . . . 10 0 ∈ (0[,]1)
191190a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0[,]1))
192188, 188, 191cnmptc 22272 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
193 eqid 2823 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
194 eqid 2823 . . . . . . . . 9 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
195 eqid 2823 . . . . . . . . 9 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
196 dfii2 23492 . . . . . . . . 9 II = ((topGen‘ran (,)) ↾t (0[,]1))
197 0red 10646 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
198 1red 10644 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
199146a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ (0[,]1))
200 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
201200oveq1d 7173 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 2) + (1 / 4)))
20231, 22addcomi 10833 . . . . . . . . . . 11 ((1 / 2) + (1 / 4)) = ((1 / 4) + (1 / 2))
203201, 202syl6eq 2874 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 / 2)))
20417, 59ltnlei 10763 . . . . . . . . . . . . 13 ((1 / 4) < (1 / 2) ↔ ¬ (1 / 2) ≤ (1 / 4))
20577, 204mpbi 232 . . . . . . . . . . . 12 ¬ (1 / 2) ≤ (1 / 4)
206200breq1d 5078 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 ≤ (1 / 4) ↔ (1 / 2) ≤ (1 / 4)))
207205, 206mtbiri 329 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ¬ 𝑦 ≤ (1 / 4))
208207iffalsed 4480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = (𝑦 + (1 / 4)))
209200oveq1d 7173 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = ((1 / 2) / 2))
210209, 29syl6eq 2874 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = (1 / 4))
211210oveq1d 7173 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((𝑦 / 2) + (1 / 2)) = ((1 / 4) + (1 / 2)))
212203, 208, 2113eqtr4d 2868 . . . . . . . . 9 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = ((𝑦 / 2) + (1 / 2)))
213 eqid 2823 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4)))
214 eqid 2823 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) = ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2)))
21559a1i 11 . . . . . . . . . 10 (𝜑 → (1 / 2) ∈ ℝ)
21673, 75recgt0ii 11548 . . . . . . . . . . . . 13 0 < (1 / 4)
21714, 17, 216ltleii 10765 . . . . . . . . . . . 12 0 ≤ (1 / 4)
21814, 59elicc2i 12805 . . . . . . . . . . . 12 ((1 / 4) ∈ (0[,](1 / 2)) ↔ ((1 / 4) ∈ ℝ ∧ 0 ≤ (1 / 4) ∧ (1 / 4) ≤ (1 / 2)))
21917, 217, 78, 218mpbir3an 1337 . . . . . . . . . . 11 (1 / 4) ∈ (0[,](1 / 2))
220219a1i 11 . . . . . . . . . 10 (𝜑 → (1 / 4) ∈ (0[,](1 / 2)))
221 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 4))
222221oveq2d 7174 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 4)))
223221oveq1d 7173 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 / 4)))
22423, 222, 2233eqtr4a 2884 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (𝑦 + (1 / 4)))
225 retopon 23374 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
226 0xr 10690 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
22759rexri 10701 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ*
228 lbicc2 12855 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2)) → 0 ∈ (0[,](1 / 2)))
229226, 227, 142, 228mp3an 1457 . . . . . . . . . . . . . . 15 0 ∈ (0[,](1 / 2))
230 iccss2 12810 . . . . . . . . . . . . . . 15 ((0 ∈ (0[,](1 / 2)) ∧ (1 / 4) ∈ (0[,](1 / 2))) → (0[,](1 / 4)) ⊆ (0[,](1 / 2)))
231229, 219, 230mp2an 690 . . . . . . . . . . . . . 14 (0[,](1 / 4)) ⊆ (0[,](1 / 2))
232 iccssre 12821 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
23314, 59, 232mp2an 690 . . . . . . . . . . . . . 14 (0[,](1 / 2)) ⊆ ℝ
234231, 233sstri 3978 . . . . . . . . . . . . 13 (0[,](1 / 4)) ⊆ ℝ
235 resttopon 21771 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 4)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4))))
236225, 234, 235mp2an 690 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4)))
237236a1i 11 . . . . . . . . . . 11 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4))))
238237, 188cnmpt1st 22278 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 4))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 4)))))
239 retop 23372 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
240 ovex 7191 . . . . . . . . . . . . . 14 (0[,](1 / 2)) ∈ V
241 restabs 21775 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (0[,](1 / 4)) ⊆ (0[,](1 / 2)) ∧ (0[,](1 / 2)) ∈ V) → (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4))))
242239, 231, 240, 241mp3an 1457 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4)))
243242eqcomi 2832 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) = (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4)))
244 resttopon 21771 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
245225, 233, 244mp2an 690 . . . . . . . . . . . . 13 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
246245a1i 11 . . . . . . . . . . . 12 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
247231a1i 11 . . . . . . . . . . . 12 (𝜑 → (0[,](1 / 4)) ⊆ (0[,](1 / 2)))
248194iihalf1cn 23538 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
249248a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
250243, 246, 247, 249cnmpt1res 22286 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,](1 / 4)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 4))) Cn II))
251 oveq2 7166 . . . . . . . . . . 11 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
252237, 188, 238, 237, 250, 251cnmpt21 22281 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 4))) ×t II) Cn II))
253 iccssre 12821 . . . . . . . . . . . . . 14 (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((1 / 4)[,](1 / 2)) ⊆ ℝ)
25417, 59, 253mp2an 690 . . . . . . . . . . . . 13 ((1 / 4)[,](1 / 2)) ⊆ ℝ
255 resttopon 21771 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 4)[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2))))
256225, 254, 255mp2an 690 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2)))
257256a1i 11 . . . . . . . . . . 11 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2))))
258257, 188cnmpt1st 22278 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2)))))
259 eqid 2823 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
260254a1i 11 . . . . . . . . . . . 12 (𝜑 → ((1 / 4)[,](1 / 2)) ⊆ ℝ)
261 unitssre 12888 . . . . . . . . . . . . 13 (0[,]1) ⊆ ℝ
262261a1i 11 . . . . . . . . . . . 12 (𝜑 → (0[,]1) ⊆ ℝ)
263149, 87sseldi 3967 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ (0[,]1))
264263adantl 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((1 / 4)[,](1 / 2))) → (𝑥 + (1 / 4)) ∈ (0[,]1))
265259cnfldtopon 23393 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
266265a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
267266cnmptid 22271 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
26817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (1 / 4) ∈ ℝ)
269268recnd 10671 . . . . . . . . . . . . . 14 (𝜑 → (1 / 4) ∈ ℂ)
270266, 266, 269cnmptc 22272 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 4)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
271259addcn 23475 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
272271a1i 11 . . . . . . . . . . . . 13 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
273266, 267, 270, 272cnmpt12f 22276 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 + (1 / 4))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
274259, 214, 196, 260, 262, 264, 273cnmptre 23533 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((1 / 4)[,](1 / 2)) ↦ (𝑥 + (1 / 4))) ∈ (((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) Cn II))
275 oveq1 7165 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 + (1 / 4)) = (𝑦 + (1 / 4)))
276257, 188, 258, 257, 274, 275cnmpt21 22281 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝑦 + (1 / 4))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ×t II) Cn II))
277193, 213, 214, 194, 197, 215, 220, 188, 224, 252, 276cnmpopc 23534 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4)))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
278 iccssre 12821 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
27959, 85, 278mp2an 690 . . . . . . . . . . . 12 ((1 / 2)[,]1) ⊆ ℝ
280 resttopon 21771 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
281225, 279, 280mp2an 690 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
282281a1i 11 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
283282, 188cnmpt1st 22278 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
284279a1i 11 . . . . . . . . . . 11 (𝜑 → ((1 / 2)[,]1) ⊆ ℝ)
285149, 156sseldi 3967 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 / 2) + (1 / 2)) ∈ (0[,]1))
286285adantl 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝑥 / 2) + (1 / 2)) ∈ (0[,]1))
287259divccn 23483 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2884, 24, 287mp2an 690 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
289288a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
29031a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
291266, 266, 290cnmptc 22272 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
292266, 289, 291, 272cnmpt12f 22276 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥 / 2) + (1 / 2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
293259, 195, 196, 284, 262, 286, 292cnmptre 23533 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((𝑥 / 2) + (1 / 2))) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
294 oveq1 7165 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 / 2) = (𝑦 / 2))
295294oveq1d 7173 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 / 2) + (1 / 2)) = ((𝑦 / 2) + (1 / 2)))
296282, 188, 283, 282, 293, 295cnmpt21 22281 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((𝑦 / 2) + (1 / 2))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
297193, 194, 195, 196, 197, 198, 199, 188, 212, 277, 296cnmpopc 23534 . . . . . . . 8 (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) ∈ ((II ×t II) Cn II))
298 breq1 5071 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 ≤ (1 / 2) ↔ 𝑦 ≤ (1 / 2)))
299 breq1 5071 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ≤ (1 / 4) ↔ 𝑦 ≤ (1 / 4)))
300299, 251, 275ifbieq12d 4496 . . . . . . . . . . . 12 (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))))
301298, 300, 295ifbieq12d 4496 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
302301equcoms 2027 . . . . . . . . . 10 (𝑦 = 𝑥 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
303302adantr 483 . . . . . . . . 9 ((𝑦 = 𝑥𝑧 = 0) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
304303eqcomd 2829 . . . . . . . 8 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
305188, 189, 192, 188, 188, 297, 304cnmpt12 22277 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) ∈ (II Cn II))
306186, 305eqeltrid 2919 . . . . . 6 (𝜑𝑃 ∈ (II Cn II))
307 iiuni 23491 . . . . . . 7 (0[,]1) = II
308307, 307cnf 21856 . . . . . 6 (𝑃 ∈ (II Cn II) → 𝑃:(0[,]1)⟶(0[,]1))
309306, 308syl 17 . . . . 5 (𝜑𝑃:(0[,]1)⟶(0[,]1))
310186fmpt 6876 . . . . 5 (∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈ (0[,]1) ↔ 𝑃:(0[,]1)⟶(0[,]1))
311309, 310sylibr 236 . . . 4 (𝜑 → ∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈ (0[,]1))
312186a1i 11 . . . 4 (𝜑𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))))
31340, 44, 91pcocn 23623 . . . . . 6 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∈ (II Cn 𝐽))
314 eqid 2823 . . . . . . 7 𝐽 = 𝐽
315307, 314cnf 21856 . . . . . 6 ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)):(0[,]1)⟶ 𝐽)
316313, 315syl 17 . . . . 5 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)):(0[,]1)⟶ 𝐽)
317316feqmptd 6735 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) = (𝑦 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘𝑦)))
318 fveq2 6672 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘𝑦) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))))
319311, 312, 317, 318fmptcof 6894 . . 3 (𝜑 → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃) = (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))))
32040, 41, 89pcocn 23623 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
321320, 42pcoval 23617 . . 3 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))))
322185, 319, 3213eqtr4rd 2869 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃))
323 id 22 . . . . . . . 8 (𝑥 = 0 → 𝑥 = 0)
324323, 142eqbrtrdi 5107 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
325324iftrued 4477 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))
326323, 217eqbrtrdi 5107 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 4))
327326iftrued 4477 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥))
328 oveq2 7166 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
329 2t0e0 11809 . . . . . . 7 (2 · 0) = 0
330328, 329syl6eq 2874 . . . . . 6 (𝑥 = 0 → (2 · 𝑥) = 0)
331325, 327, 3303eqtrd 2862 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 0)
332 c0ex 10637 . . . . 5 0 ∈ V
333331, 186, 332fvmpt 6770 . . . 4 (0 ∈ (0[,]1) → (𝑃‘0) = 0)
334191, 333syl 17 . . 3 (𝜑 → (𝑃‘0) = 0)
335147a1i 11 . . . 4 (𝜑 → 1 ∈ (0[,]1))
33659, 85ltnlei 10763 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
337143, 336mpbi 232 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
338 breq1 5071 . . . . . . . 8 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
339337, 338mtbiri 329 . . . . . . 7 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
340339iffalsed 4480 . . . . . 6 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2)))
341 oveq1 7165 . . . . . . . 8 (𝑥 = 1 → (𝑥 / 2) = (1 / 2))
342341oveq1d 7173 . . . . . . 7 (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = ((1 / 2) + (1 / 2)))
343342, 83syl6eq 2874 . . . . . 6 (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = 1)
344340, 343eqtrd 2858 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 1)
345 1ex 10639 . . . . 5 1 ∈ V
346344, 186, 345fvmpt 6770 . . . 4 (1 ∈ (0[,]1) → (𝑃‘1) = 1)
347335, 346syl 17 . . 3 (𝜑 → (𝑃‘1) = 1)
348313, 306, 334, 347reparpht 23604 . 2 (𝜑 → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
349322, 348eqbrtrd 5090 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  wss 3938  ifcif 4469   cuni 4840   class class class wbr 5068  cmpt 5148  ran crn 5558  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  cn 11640  2c2 11695  4c4 11697  (,)cioo 12741  [,]cicc 12744  t crest 16696  TopOpenctopn 16697  topGenctg 16713  fldccnfld 20547  Topctop 21503  TopOnctopon 21520   Cn ccn 21834   ×t ctx 22170  IIcii 23485  phcphtpc 23575  *𝑝cpco 23606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-cn 21837  df-cnp 21838  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-ii 23487  df-htpy 23576  df-phtpy 23577  df-phtpc 23598  df-pco 23611
This theorem is referenced by:  pcophtb  23635  pi1grplem  23655  pi1xfr  23661  pi1xfrcnvlem  23662
  Copyright terms: Public domain W3C validator