MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoass Structured version   Visualization version   GIF version

Theorem pcoass 24973
Description: Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcoass.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoass.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoass.4 (𝜑𝐻 ∈ (II Cn 𝐽))
pcoass.5 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcoass.6 (𝜑 → (𝐺‘1) = (𝐻‘0))
pcoass.7 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
Assertion
Ref Expression
pcoass (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐻   𝑥,𝐽   𝜑,𝑥
Allowed substitution hint:   𝑃(𝑥)

Proof of Theorem pcoass
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 4506 . . . . . . . . . . 11 (𝑥 ≤ (1 / 4) → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥))
21fveq2d 6879 . . . . . . . . . 10 (𝑥 ≤ (1 / 4) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)))
32adantl 481 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)))
4 2cn 12313 . . . . . . . . . . . . 13 2 ∈ ℂ
5 elicc01 13481 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ 1))
65simp1bi 1145 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℝ)
76adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℝ)
87recnd 11261 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℂ)
9 mulcom 11213 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) = (𝑥 · 2))
104, 8, 9sylancr 587 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) = (𝑥 · 2))
115simp2bi 1146 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0[,]1) → 0 ≤ 𝑥)
1211adantr 480 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 0 ≤ 𝑥)
13 simpr 484 . . . . . . . . . . . . . 14 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 4))
14 0re 11235 . . . . . . . . . . . . . . 15 0 ∈ ℝ
15 4nn 12321 . . . . . . . . . . . . . . . 16 4 ∈ ℕ
16 nnrecre 12280 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ → (1 / 4) ∈ ℝ)
1715, 16ax-mp 5 . . . . . . . . . . . . . . 15 (1 / 4) ∈ ℝ
1814, 17elicc2i 13427 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,](1 / 4)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 ≤ (1 / 4)))
197, 12, 13, 18syl3anbrc 1344 . . . . . . . . . . . . 13 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ (0[,](1 / 4)))
20 2rp 13011 . . . . . . . . . . . . . 14 2 ∈ ℝ+
214mul02i 11422 . . . . . . . . . . . . . 14 (0 · 2) = 0
2217recni 11247 . . . . . . . . . . . . . . 15 (1 / 4) ∈ ℂ
23222timesi 12376 . . . . . . . . . . . . . . . 16 (2 · (1 / 4)) = ((1 / 4) + (1 / 4))
24 2ne0 12342 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
25 recdiv2 11952 . . . . . . . . . . . . . . . . . . . 20 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) / 2) = (1 / (2 · 2)))
264, 24, 4, 24, 25mp4an 693 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) / 2) = (1 / (2 · 2))
27 2t2e4 12402 . . . . . . . . . . . . . . . . . . . 20 (2 · 2) = 4
2827oveq2i 7414 . . . . . . . . . . . . . . . . . . 19 (1 / (2 · 2)) = (1 / 4)
2926, 28eqtri 2758 . . . . . . . . . . . . . . . . . 18 ((1 / 2) / 2) = (1 / 4)
3029, 29oveq12i 7415 . . . . . . . . . . . . . . . . 17 (((1 / 2) / 2) + ((1 / 2) / 2)) = ((1 / 4) + (1 / 4))
31 halfcn 12453 . . . . . . . . . . . . . . . . . 18 (1 / 2) ∈ ℂ
32 2halves 12457 . . . . . . . . . . . . . . . . . 18 ((1 / 2) ∈ ℂ → (((1 / 2) / 2) + ((1 / 2) / 2)) = (1 / 2))
3331, 32ax-mp 5 . . . . . . . . . . . . . . . . 17 (((1 / 2) / 2) + ((1 / 2) / 2)) = (1 / 2)
3430, 33eqtr3i 2760 . . . . . . . . . . . . . . . 16 ((1 / 4) + (1 / 4)) = (1 / 2)
3523, 34eqtri 2758 . . . . . . . . . . . . . . 15 (2 · (1 / 4)) = (1 / 2)
364, 22, 35mulcomli 11242 . . . . . . . . . . . . . 14 ((1 / 4) · 2) = (1 / 2)
3714, 17, 20, 21, 36iccdili 13506 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,](1 / 4)) → (𝑥 · 2) ∈ (0[,](1 / 2)))
3819, 37syl 17 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ (0[,](1 / 2)))
3910, 38eqeltrd 2834 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ (0[,](1 / 2)))
40 pcoass.2 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (II Cn 𝐽))
41 pcoass.3 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (II Cn 𝐽))
42 pcoass.4 . . . . . . . . . . . . . 14 (𝜑𝐻 ∈ (II Cn 𝐽))
43 pcoass.6 . . . . . . . . . . . . . 14 (𝜑 → (𝐺‘1) = (𝐻‘0))
4441, 42, 43pcocn 24966 . . . . . . . . . . . . 13 (𝜑 → (𝐺(*𝑝𝐽)𝐻) ∈ (II Cn 𝐽))
4540, 44pcoval1 24962 . . . . . . . . . . . 12 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥))))
4640, 41pcoval1 24962 . . . . . . . . . . . 12 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐹‘(2 · (2 · 𝑥))))
4745, 46eqtr4d 2773 . . . . . . . . . . 11 ((𝜑 ∧ (2 · 𝑥) ∈ (0[,](1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
4839, 47sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ 𝑥 ≤ (1 / 4))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
4948anassrs 467 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(2 · 𝑥)) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
503, 49eqtrd 2770 . . . . . . . 8 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
5150adantlr 715 . . . . . . 7 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
52 simplll 774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝜑)
536ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ℝ)
5453adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℝ)
55 letric 11333 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ (1 / 4) ∈ ℝ) → (𝑥 ≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥))
5653, 17, 55sylancl 586 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → (𝑥 ≤ (1 / 4) ∨ (1 / 4) ≤ 𝑥))
5756orcanai 1004 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ≤ 𝑥)
58 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ≤ (1 / 2))
59 halfre 12452 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
6017, 59elicc2i 13427 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) ↔ (𝑥 ∈ ℝ ∧ (1 / 4) ≤ 𝑥𝑥 ≤ (1 / 2)))
6154, 57, 58, 60syl3anbrc 1344 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ((1 / 4)[,](1 / 2)))
6260simp1bi 1145 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → 𝑥 ∈ ℝ)
63 readdcl 11210 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ (1 / 4) ∈ ℝ) → (𝑥 + (1 / 4)) ∈ ℝ)
6462, 17, 63sylancl 586 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ ℝ)
6517a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ∈ ℝ)
6660simp2bi 1146 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ≤ 𝑥)
6765, 62, 65, 66leadd1dd 11849 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → ((1 / 4) + (1 / 4)) ≤ (𝑥 + (1 / 4)))
6834, 67eqbrtrrid 5155 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 2) ≤ (𝑥 + (1 / 4)))
6959a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 2) ∈ ℝ)
7060simp3bi 1147 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → 𝑥 ≤ (1 / 2))
71 2lt4 12413 . . . . . . . . . . . . . . . . 17 2 < 4
72 2re 12312 . . . . . . . . . . . . . . . . . 18 2 ∈ ℝ
73 4re 12322 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
74 2pos 12341 . . . . . . . . . . . . . . . . . 18 0 < 2
75 4pos 12345 . . . . . . . . . . . . . . . . . 18 0 < 4
7672, 73, 74, 75ltrecii 12156 . . . . . . . . . . . . . . . . 17 (2 < 4 ↔ (1 / 4) < (1 / 2))
7771, 76mpbi 230 . . . . . . . . . . . . . . . 16 (1 / 4) < (1 / 2)
7817, 59, 77ltleii 11356 . . . . . . . . . . . . . . 15 (1 / 4) ≤ (1 / 2)
7978a1i 11 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (1 / 4) ≤ (1 / 2))
8062, 65, 69, 69, 70, 79le2addd 11854 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ≤ ((1 / 2) + (1 / 2)))
81 ax-1cn 11185 . . . . . . . . . . . . . 14 1 ∈ ℂ
82 2halves 12457 . . . . . . . . . . . . . 14 (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1)
8381, 82ax-mp 5 . . . . . . . . . . . . 13 ((1 / 2) + (1 / 2)) = 1
8480, 83breqtrdi 5160 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ≤ 1)
85 1re 11233 . . . . . . . . . . . . 13 1 ∈ ℝ
8659, 85elicc2i 13427 . . . . . . . . . . . 12 ((𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1) ↔ ((𝑥 + (1 / 4)) ∈ ℝ ∧ (1 / 2) ≤ (𝑥 + (1 / 4)) ∧ (𝑥 + (1 / 4)) ≤ 1))
8764, 68, 84, 86syl3anbrc 1344 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1))
8861, 87syl 17 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1))
89 pcoass.5 . . . . . . . . . . . 12 (𝜑 → (𝐹‘1) = (𝐺‘0))
9041, 42pco0 24963 . . . . . . . . . . . 12 (𝜑 → ((𝐺(*𝑝𝐽)𝐻)‘0) = (𝐺‘0))
9189, 90eqtr4d 2773 . . . . . . . . . . 11 (𝜑 → (𝐹‘1) = ((𝐺(*𝑝𝐽)𝐻)‘0))
9240, 44, 91pcoval2 24965 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 + (1 / 4)) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)))
9352, 88, 92syl2anc 584 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)))
9483oveq2i 7414 . . . . . . . . . . . 12 ((2 · (𝑥 + (1 / 4))) − ((1 / 2) + (1 / 2))) = ((2 · (𝑥 + (1 / 4))) − 1)
95 2cnd 12316 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 2 ∈ ℂ)
9654recnd 11261 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → 𝑥 ∈ ℂ)
9722a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 4) ∈ ℂ)
9895, 96, 97adddid 11257 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 · 𝑥) + (2 · (1 / 4))))
9935oveq2i 7414 . . . . . . . . . . . . . 14 ((2 · 𝑥) + (2 · (1 / 4))) = ((2 · 𝑥) + (1 / 2))
10098, 99eqtrdi 2786 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · (𝑥 + (1 / 4))) = ((2 · 𝑥) + (1 / 2)))
101100oveq1d 7418 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − ((1 / 2) + (1 / 2))) = (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))))
10294, 101eqtr3id 2784 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))))
103 remulcl 11212 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (2 · 𝑥) ∈ ℝ)
10472, 54, 103sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ℝ)
105104recnd 11261 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ℂ)
10631a1i 11 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (1 / 2) ∈ ℂ)
107105, 106, 106pnpcan2d 11630 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (((2 · 𝑥) + (1 / 2)) − ((1 / 2) + (1 / 2))) = ((2 · 𝑥) − (1 / 2)))
108102, 107eqtrd 2770 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · (𝑥 + (1 / 4))) − 1) = ((2 · 𝑥) − (1 / 2)))
109108fveq2d 6879 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · (𝑥 + (1 / 4))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))))
1104, 96, 9sylancr 587 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) = (𝑥 · 2))
11181, 4, 24divcan1i 11983 . . . . . . . . . . . . . . 15 ((1 / 2) · 2) = 1
11217, 59, 20, 36, 111iccdili 13506 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 · 2) ∈ ((1 / 2)[,]1))
11361, 112syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝑥 · 2) ∈ ((1 / 2)[,]1))
114110, 113eqeltrd 2834 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · 𝑥) ∈ ((1 / 2)[,]1))
11531subidi 11552 . . . . . . . . . . . . 13 ((1 / 2) − (1 / 2)) = 0
116 1mhlfehlf 12458 . . . . . . . . . . . . 13 (1 − (1 / 2)) = (1 / 2)
11759, 85, 59, 115, 116iccshftli 13504 . . . . . . . . . . . 12 ((2 · 𝑥) ∈ ((1 / 2)[,]1) → ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2)))
118114, 117syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2)))
11941, 42pcoval1 24962 . . . . . . . . . . 11 ((𝜑 ∧ ((2 · 𝑥) − (1 / 2)) ∈ (0[,](1 / 2))) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))))
12052, 118, 119syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))))
12195, 105, 106subdid 11691 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2 · 𝑥) − (1 / 2))) = ((2 · (2 · 𝑥)) − (2 · (1 / 2))))
1224, 24recidi 11970 . . . . . . . . . . . . 13 (2 · (1 / 2)) = 1
123122oveq2i 7414 . . . . . . . . . . . 12 ((2 · (2 · 𝑥)) − (2 · (1 / 2))) = ((2 · (2 · 𝑥)) − 1)
124121, 123eqtrdi 2786 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (2 · ((2 · 𝑥) − (1 / 2))) = ((2 · (2 · 𝑥)) − 1))
125124fveq2d 6879 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → (𝐺‘(2 · ((2 · 𝑥) − (1 / 2)))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
126120, 125eqtrd 2770 . . . . . . . . 9 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · 𝑥) − (1 / 2))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
12793, 109, 1263eqtrd 2774 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
128 iffalse 4509 . . . . . . . . . 10 𝑥 ≤ (1 / 4) → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (𝑥 + (1 / 4)))
129128fveq2d 6879 . . . . . . . . 9 𝑥 ≤ (1 / 4) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))))
130129adantl 481 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘(𝑥 + (1 / 4))))
13140, 41, 89pcoval2 24965 . . . . . . . . 9 ((𝜑 ∧ (2 · 𝑥) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
13252, 114, 131syl2anc 584 . . . . . . . 8 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)) = (𝐺‘((2 · (2 · 𝑥)) − 1)))
133127, 130, 1323eqtr4d 2780 . . . . . . 7 ((((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) ∧ ¬ 𝑥 ≤ (1 / 4)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
13451, 133pm2.61dan 812 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
135 iftrue 4506 . . . . . . . 8 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))
136135fveq2d 6879 . . . . . . 7 (𝑥 ≤ (1 / 2) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))))
137136adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4)))))
138 iftrue 4506 . . . . . . 7 (𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
139138adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)))
140134, 137, 1393eqtr4d 2780 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
141 elii2 24881 . . . . . . . 8 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2)) → 𝑥 ∈ ((1 / 2)[,]1))
142 halfge0 12455 . . . . . . . . . . . . . 14 0 ≤ (1 / 2)
143 halflt1 12456 . . . . . . . . . . . . . . 15 (1 / 2) < 1
14459, 85, 143ltleii 11356 . . . . . . . . . . . . . 14 (1 / 2) ≤ 1
145 elicc01 13481 . . . . . . . . . . . . . 14 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
14659, 142, 144, 145mpbir3an 1342 . . . . . . . . . . . . 13 (1 / 2) ∈ (0[,]1)
147 1elunit 13485 . . . . . . . . . . . . 13 1 ∈ (0[,]1)
148 iccss2 13432 . . . . . . . . . . . . 13 (((1 / 2) ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
149146, 147, 148mp2an 692 . . . . . . . . . . . 12 ((1 / 2)[,]1) ⊆ (0[,]1)
150149sseli 3954 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ (0[,]1))
1514, 24div0i 11973 . . . . . . . . . . . 12 (0 / 2) = 0
152 eqid 2735 . . . . . . . . . . . 12 (1 / 2) = (1 / 2)
15314, 85, 20, 151, 152icccntri 13508 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) → (𝑥 / 2) ∈ (0[,](1 / 2)))
15431addlidi 11421 . . . . . . . . . . . 12 (0 + (1 / 2)) = (1 / 2)
15514, 59, 59, 154, 83iccshftri 13502 . . . . . . . . . . 11 ((𝑥 / 2) ∈ (0[,](1 / 2)) → ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1))
156150, 153, 1553syl 18 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1))
15740, 44, 91pcoval2 24965 . . . . . . . . . 10 ((𝜑 ∧ ((𝑥 / 2) + (1 / 2)) ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)))
158156, 157sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)))
15959, 85elicc2i 13427 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) ↔ (𝑥 ∈ ℝ ∧ (1 / 2) ≤ 𝑥𝑥 ≤ 1))
160159simp1bi 1145 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ ℝ)
161160recnd 11261 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → 𝑥 ∈ ℂ)
162 1cnd 11228 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → 1 ∈ ℂ)
163 2cnd 12316 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((1 / 2)[,]1) → 2 ∈ ℂ)
16424a1i 11 . . . . . . . . . . . . . . 15 (𝑥 ∈ ((1 / 2)[,]1) → 2 ≠ 0)
165161, 162, 163, 164divdird 12053 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 + 1) / 2) = ((𝑥 / 2) + (1 / 2)))
166165oveq2d 7419 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 + 1) / 2)) = (2 · ((𝑥 / 2) + (1 / 2))))
167 peano2cn 11405 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℂ → (𝑥 + 1) ∈ ℂ)
168161, 167syl 17 . . . . . . . . . . . . . 14 (𝑥 ∈ ((1 / 2)[,]1) → (𝑥 + 1) ∈ ℂ)
169168, 163, 164divcan2d 12017 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 + 1) / 2)) = (𝑥 + 1))
170166, 169eqtr3d 2772 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → (2 · ((𝑥 / 2) + (1 / 2))) = (𝑥 + 1))
171161, 162, 170mvrraddd 11647 . . . . . . . . . . 11 (𝑥 ∈ ((1 / 2)[,]1) → ((2 · ((𝑥 / 2) + (1 / 2))) − 1) = 𝑥)
172171fveq2d 6879 . . . . . . . . . 10 (𝑥 ∈ ((1 / 2)[,]1) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘𝑥))
173172adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝𝐽)𝐻)‘((2 · ((𝑥 / 2) + (1 / 2))) − 1)) = ((𝐺(*𝑝𝐽)𝐻)‘𝑥))
17441, 42, 43pcoval2 24965 . . . . . . . . 9 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐺(*𝑝𝐽)𝐻)‘𝑥) = (𝐻‘((2 · 𝑥) − 1)))
175158, 173, 1743eqtrd 2774 . . . . . . . 8 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
176141, 175sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 ≤ (1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
177176anassrs 467 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))) = (𝐻‘((2 · 𝑥) − 1)))
178 iffalse 4509 . . . . . . . 8 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2)))
179178fveq2d 6879 . . . . . . 7 𝑥 ≤ (1 / 2) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))))
180179adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘((𝑥 / 2) + (1 / 2))))
181 iffalse 4509 . . . . . . 7 𝑥 ≤ (1 / 2) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1)))
182181adantl 481 . . . . . 6 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))) = (𝐻‘((2 · 𝑥) − 1)))
183177, 180, 1823eqtr4d 2780 . . . . 5 (((𝜑𝑥 ∈ (0[,]1)) ∧ ¬ 𝑥 ≤ (1 / 2)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
184140, 183pm2.61dan 812 . . . 4 ((𝜑𝑥 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) = if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1))))
185184mpteq2dva 5214 . . 3 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))))
186 pcoass.7 . . . . . . 7 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
187 iitopon 24821 . . . . . . . . 9 II ∈ (TopOn‘(0[,]1))
188187a1i 11 . . . . . . . 8 (𝜑 → II ∈ (TopOn‘(0[,]1)))
189188cnmptid 23597 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
190 0elunit 13484 . . . . . . . . . 10 0 ∈ (0[,]1)
191190a1i 11 . . . . . . . . 9 (𝜑 → 0 ∈ (0[,]1))
192188, 188, 191cnmptc 23598 . . . . . . . 8 (𝜑 → (𝑥 ∈ (0[,]1) ↦ 0) ∈ (II Cn II))
193 eqid 2735 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
194 eqid 2735 . . . . . . . . 9 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
195 eqid 2735 . . . . . . . . 9 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
196 dfii2 24824 . . . . . . . . 9 II = ((topGen‘ran (,)) ↾t (0[,]1))
197 0red 11236 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
198 1red 11234 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
199146a1i 11 . . . . . . . . 9 (𝜑 → (1 / 2) ∈ (0[,]1))
200 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 2))
201200oveq1d 7418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 2) + (1 / 4)))
20231, 22addcomi 11424 . . . . . . . . . . 11 ((1 / 2) + (1 / 4)) = ((1 / 4) + (1 / 2))
203201, 202eqtrdi 2786 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 / 2)))
20417, 59ltnlei 11354 . . . . . . . . . . . . 13 ((1 / 4) < (1 / 2) ↔ ¬ (1 / 2) ≤ (1 / 4))
20577, 204mpbi 230 . . . . . . . . . . . 12 ¬ (1 / 2) ≤ (1 / 4)
206200breq1d 5129 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 ≤ (1 / 4) ↔ (1 / 2) ≤ (1 / 4)))
207205, 206mtbiri 327 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ¬ 𝑦 ≤ (1 / 4))
208207iffalsed 4511 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = (𝑦 + (1 / 4)))
209200oveq1d 7418 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = ((1 / 2) / 2))
210209, 29eqtrdi 2786 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 / 2) = (1 / 4))
211210oveq1d 7418 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → ((𝑦 / 2) + (1 / 2)) = ((1 / 4) + (1 / 2)))
212203, 208, 2113eqtr4d 2780 . . . . . . . . 9 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑧 ∈ (0[,]1))) → if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))) = ((𝑦 / 2) + (1 / 2)))
213 eqid 2735 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4)))
214 eqid 2735 . . . . . . . . . 10 ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) = ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2)))
21559a1i 11 . . . . . . . . . 10 (𝜑 → (1 / 2) ∈ ℝ)
21673, 75recgt0ii 12146 . . . . . . . . . . . . 13 0 < (1 / 4)
21714, 17, 216ltleii 11356 . . . . . . . . . . . 12 0 ≤ (1 / 4)
21814, 59elicc2i 13427 . . . . . . . . . . . 12 ((1 / 4) ∈ (0[,](1 / 2)) ↔ ((1 / 4) ∈ ℝ ∧ 0 ≤ (1 / 4) ∧ (1 / 4) ≤ (1 / 2)))
21917, 217, 78, 218mpbir3an 1342 . . . . . . . . . . 11 (1 / 4) ∈ (0[,](1 / 2))
220219a1i 11 . . . . . . . . . 10 (𝜑 → (1 / 4) ∈ (0[,](1 / 2)))
221 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → 𝑦 = (1 / 4))
222221oveq2d 7419 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (2 · (1 / 4)))
223221oveq1d 7418 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (𝑦 + (1 / 4)) = ((1 / 4) + (1 / 4)))
22423, 222, 2233eqtr4a 2796 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 = (1 / 4) ∧ 𝑧 ∈ (0[,]1))) → (2 · 𝑦) = (𝑦 + (1 / 4)))
225 retopon 24700 . . . . . . . . . . . . 13 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
226 0xr 11280 . . . . . . . . . . . . . . . 16 0 ∈ ℝ*
22759rexri 11291 . . . . . . . . . . . . . . . 16 (1 / 2) ∈ ℝ*
228 lbicc2 13479 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ* ∧ (1 / 2) ∈ ℝ* ∧ 0 ≤ (1 / 2)) → 0 ∈ (0[,](1 / 2)))
229226, 227, 142, 228mp3an 1463 . . . . . . . . . . . . . . 15 0 ∈ (0[,](1 / 2))
230 iccss2 13432 . . . . . . . . . . . . . . 15 ((0 ∈ (0[,](1 / 2)) ∧ (1 / 4) ∈ (0[,](1 / 2))) → (0[,](1 / 4)) ⊆ (0[,](1 / 2)))
231229, 219, 230mp2an 692 . . . . . . . . . . . . . 14 (0[,](1 / 4)) ⊆ (0[,](1 / 2))
232 iccssre 13444 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
23314, 59, 232mp2an 692 . . . . . . . . . . . . . 14 (0[,](1 / 2)) ⊆ ℝ
234231, 233sstri 3968 . . . . . . . . . . . . 13 (0[,](1 / 4)) ⊆ ℝ
235 resttopon 23097 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 4)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4))))
236225, 234, 235mp2an 692 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4)))
237236a1i 11 . . . . . . . . . . 11 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 4))) ∈ (TopOn‘(0[,](1 / 4))))
238237, 188cnmpt1st 23604 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 4))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 4)))))
239 retop 24698 . . . . . . . . . . . . . 14 (topGen‘ran (,)) ∈ Top
240 ovex 7436 . . . . . . . . . . . . . 14 (0[,](1 / 2)) ∈ V
241 restabs 23101 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (0[,](1 / 4)) ⊆ (0[,](1 / 2)) ∧ (0[,](1 / 2)) ∈ V) → (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4))))
242239, 231, 240, 241mp3an 1463 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4))) = ((topGen‘ran (,)) ↾t (0[,](1 / 4)))
243242eqcomi 2744 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (0[,](1 / 4))) = (((topGen‘ran (,)) ↾t (0[,](1 / 2))) ↾t (0[,](1 / 4)))
244 resttopon 23097 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
245225, 233, 244mp2an 692 . . . . . . . . . . . . 13 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
246245a1i 11 . . . . . . . . . . . 12 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
247231a1i 11 . . . . . . . . . . . 12 (𝜑 → (0[,](1 / 4)) ⊆ (0[,](1 / 2)))
248194iihalf1cn 24875 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
249248a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0[,](1 / 2)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
250243, 246, 247, 249cnmpt1res 23612 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,](1 / 4)) ↦ (2 · 𝑥)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 4))) Cn II))
251 oveq2 7411 . . . . . . . . . . 11 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
252237, 188, 238, 237, 250, 251cnmpt21 23607 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ (0[,](1 / 4)), 𝑧 ∈ (0[,]1) ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 4))) ×t II) Cn II))
253 iccssre 13444 . . . . . . . . . . . . . 14 (((1 / 4) ∈ ℝ ∧ (1 / 2) ∈ ℝ) → ((1 / 4)[,](1 / 2)) ⊆ ℝ)
25417, 59, 253mp2an 692 . . . . . . . . . . . . 13 ((1 / 4)[,](1 / 2)) ⊆ ℝ
255 resttopon 23097 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 4)[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2))))
256225, 254, 255mp2an 692 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2)))
257256a1i 11 . . . . . . . . . . 11 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ∈ (TopOn‘((1 / 4)[,](1 / 2))))
258257, 188cnmpt1st 23604 . . . . . . . . . . 11 (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2)))))
259 eqid 2735 . . . . . . . . . . . 12 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
260254a1i 11 . . . . . . . . . . . 12 (𝜑 → ((1 / 4)[,](1 / 2)) ⊆ ℝ)
261 unitssre 13514 . . . . . . . . . . . . 13 (0[,]1) ⊆ ℝ
262261a1i 11 . . . . . . . . . . . 12 (𝜑 → (0[,]1) ⊆ ℝ)
263149, 87sselid 3956 . . . . . . . . . . . . 13 (𝑥 ∈ ((1 / 4)[,](1 / 2)) → (𝑥 + (1 / 4)) ∈ (0[,]1))
264263adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((1 / 4)[,](1 / 2))) → (𝑥 + (1 / 4)) ∈ (0[,]1))
265259cnfldtopon 24719 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
266265a1i 11 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
267266cnmptid 23597 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
26817a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (1 / 4) ∈ ℝ)
269268recnd 11261 . . . . . . . . . . . . . 14 (𝜑 → (1 / 4) ∈ ℂ)
270266, 266, 269cnmptc 23598 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 4)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
271259addcn 24803 . . . . . . . . . . . . . 14 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
272271a1i 11 . . . . . . . . . . . . 13 (𝜑 → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
273266, 267, 270, 272cnmpt12f 23602 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 + (1 / 4))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
274259, 214, 196, 260, 262, 264, 273cnmptre 24870 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ((1 / 4)[,](1 / 2)) ↦ (𝑥 + (1 / 4))) ∈ (((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) Cn II))
275 oveq1 7410 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 + (1 / 4)) = (𝑦 + (1 / 4)))
276257, 188, 258, 257, 274, 275cnmpt21 23607 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((1 / 4)[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ (𝑦 + (1 / 4))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 4)[,](1 / 2))) ×t II) Cn II))
277193, 213, 214, 194, 197, 215, 220, 188, 224, 252, 276cnmpopc 24871 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4)))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
278 iccssre 13444 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
27959, 85, 278mp2an 692 . . . . . . . . . . . 12 ((1 / 2)[,]1) ⊆ ℝ
280 resttopon 23097 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
281225, 279, 280mp2an 692 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
282281a1i 11 . . . . . . . . . 10 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
283282, 188cnmpt1st 23604 . . . . . . . . . 10 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
284279a1i 11 . . . . . . . . . . 11 (𝜑 → ((1 / 2)[,]1) ⊆ ℝ)
285149, 156sselid 3956 . . . . . . . . . . . 12 (𝑥 ∈ ((1 / 2)[,]1) → ((𝑥 / 2) + (1 / 2)) ∈ (0[,]1))
286285adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((1 / 2)[,]1)) → ((𝑥 / 2) + (1 / 2)) ∈ (0[,]1))
287259divccn 24813 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
2884, 24, 287mp2an 692 . . . . . . . . . . . . 13 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
289288a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
29031a1i 11 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
291266, 266, 290cnmptc 23598 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 / 2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
292266, 289, 291, 272cnmpt12f 23602 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((𝑥 / 2) + (1 / 2))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
293259, 195, 196, 284, 262, 286, 292cnmptre 24870 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1) ↦ ((𝑥 / 2) + (1 / 2))) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
294 oveq1 7410 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 / 2) = (𝑦 / 2))
295294oveq1d 7418 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑥 / 2) + (1 / 2)) = ((𝑦 / 2) + (1 / 2)))
296282, 188, 283, 282, 293, 295cnmpt21 23607 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑧 ∈ (0[,]1) ↦ ((𝑦 / 2) + (1 / 2))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
297193, 194, 195, 196, 197, 198, 199, 188, 212, 277, 296cnmpopc 24871 . . . . . . . 8 (𝜑 → (𝑦 ∈ (0[,]1), 𝑧 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2)))) ∈ ((II ×t II) Cn II))
298 breq1 5122 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝑥 ≤ (1 / 2) ↔ 𝑦 ≤ (1 / 2)))
299 breq1 5122 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥 ≤ (1 / 4) ↔ 𝑦 ≤ (1 / 4)))
300299, 251, 275ifbieq12d 4529 . . . . . . . . . . . 12 (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))))
301298, 300, 295ifbieq12d 4529 . . . . . . . . . . 11 (𝑥 = 𝑦 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
302301equcoms 2019 . . . . . . . . . 10 (𝑦 = 𝑥 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
303302adantr 480 . . . . . . . . 9 ((𝑦 = 𝑥𝑧 = 0) → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))))
304303eqcomd 2741 . . . . . . . 8 ((𝑦 = 𝑥𝑧 = 0) → if(𝑦 ≤ (1 / 2), if(𝑦 ≤ (1 / 4), (2 · 𝑦), (𝑦 + (1 / 4))), ((𝑦 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))
305188, 189, 192, 188, 188, 297, 304cnmpt12 23603 . . . . . . 7 (𝜑 → (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) ∈ (II Cn II))
306186, 305eqeltrid 2838 . . . . . 6 (𝜑𝑃 ∈ (II Cn II))
307 iiuni 24823 . . . . . . 7 (0[,]1) = II
308307, 307cnf 23182 . . . . . 6 (𝑃 ∈ (II Cn II) → 𝑃:(0[,]1)⟶(0[,]1))
309306, 308syl 17 . . . . 5 (𝜑𝑃:(0[,]1)⟶(0[,]1))
310186fmpt 7099 . . . . 5 (∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈ (0[,]1) ↔ 𝑃:(0[,]1)⟶(0[,]1))
311309, 310sylibr 234 . . . 4 (𝜑 → ∀𝑥 ∈ (0[,]1)if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) ∈ (0[,]1))
312186a1i 11 . . . 4 (𝜑𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))))
31340, 44, 91pcocn 24966 . . . . . 6 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∈ (II Cn 𝐽))
314 eqid 2735 . . . . . . 7 𝐽 = 𝐽
315307, 314cnf 23182 . . . . . 6 ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∈ (II Cn 𝐽) → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)):(0[,]1)⟶ 𝐽)
316313, 315syl 17 . . . . 5 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)):(0[,]1)⟶ 𝐽)
317316feqmptd 6946 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) = (𝑦 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘𝑦)))
318 fveq2 6875 . . . 4 (𝑦 = if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘𝑦) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))))
319311, 312, 317, 318fmptcof 7119 . . 3 (𝜑 → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃) = (𝑥 ∈ (0[,]1) ↦ ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻))‘if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))))))
32040, 41, 89pcocn 24966 . . . 4 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
321320, 42pcoval 24960 . . 3 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((𝐹(*𝑝𝐽)𝐺)‘(2 · 𝑥)), (𝐻‘((2 · 𝑥) − 1)))))
322185, 319, 3213eqtr4rd 2781 . 2 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻) = ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃))
323 id 22 . . . . . . . 8 (𝑥 = 0 → 𝑥 = 0)
324323, 142eqbrtrdi 5158 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 2))
325324iftrued 4508 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))))
326323, 217eqbrtrdi 5158 . . . . . . 7 (𝑥 = 0 → 𝑥 ≤ (1 / 4))
327326iftrued 4508 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))) = (2 · 𝑥))
328 oveq2 7411 . . . . . . 7 (𝑥 = 0 → (2 · 𝑥) = (2 · 0))
329 2t0e0 12407 . . . . . . 7 (2 · 0) = 0
330328, 329eqtrdi 2786 . . . . . 6 (𝑥 = 0 → (2 · 𝑥) = 0)
331325, 327, 3303eqtrd 2774 . . . . 5 (𝑥 = 0 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 0)
332 c0ex 11227 . . . . 5 0 ∈ V
333331, 186, 332fvmpt 6985 . . . 4 (0 ∈ (0[,]1) → (𝑃‘0) = 0)
334191, 333syl 17 . . 3 (𝜑 → (𝑃‘0) = 0)
335147a1i 11 . . . 4 (𝜑 → 1 ∈ (0[,]1))
33659, 85ltnlei 11354 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
337143, 336mpbi 230 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
338 breq1 5122 . . . . . . . 8 (𝑥 = 1 → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
339337, 338mtbiri 327 . . . . . . 7 (𝑥 = 1 → ¬ 𝑥 ≤ (1 / 2))
340339iffalsed 4511 . . . . . 6 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = ((𝑥 / 2) + (1 / 2)))
341 oveq1 7410 . . . . . . . 8 (𝑥 = 1 → (𝑥 / 2) = (1 / 2))
342341oveq1d 7418 . . . . . . 7 (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = ((1 / 2) + (1 / 2)))
343342, 83eqtrdi 2786 . . . . . 6 (𝑥 = 1 → ((𝑥 / 2) + (1 / 2)) = 1)
344340, 343eqtrd 2770 . . . . 5 (𝑥 = 1 → if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2))) = 1)
345 1ex 11229 . . . . 5 1 ∈ V
346344, 186, 345fvmpt 6985 . . . 4 (1 ∈ (0[,]1) → (𝑃‘1) = 1)
347335, 346syl 17 . . 3 (𝜑 → (𝑃‘1) = 1)
348313, 306, 334, 347reparpht 24947 . 2 (𝜑 → ((𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)) ∘ 𝑃)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
349322, 348eqbrtrd 5141 1 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)(*𝑝𝐽)𝐻)( ≃ph𝐽)(𝐹(*𝑝𝐽)(𝐺(*𝑝𝐽)𝐻)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  wss 3926  ifcif 4500   cuni 4883   class class class wbr 5119  cmpt 5201  ran crn 5655  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  *cxr 11266   < clt 11267  cle 11268  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  4c4 12295  (,)cioo 13360  [,]cicc 13363  t crest 17432  TopOpenctopn 17433  topGenctg 17449  fldccnfld 21313  Topctop 22829  TopOnctopon 22846   Cn ccn 23160   ×t ctx 23496  IIcii 24817  phcphtpc 24917  *𝑝cpco 24949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-fi 9421  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-q 12963  df-rp 13007  df-xneg 13126  df-xadd 13127  df-xmul 13128  df-ioo 13364  df-icc 13367  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-rest 17434  df-topn 17435  df-0g 17453  df-gsum 17454  df-topgen 17455  df-pt 17456  df-prds 17459  df-xrs 17514  df-qtop 17519  df-imas 17520  df-xps 17522  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-mulg 19049  df-cntz 19298  df-cmn 19761  df-psmet 21305  df-xmet 21306  df-met 21307  df-bl 21308  df-mopn 21309  df-cnfld 21314  df-top 22830  df-topon 22847  df-topsp 22869  df-bases 22882  df-cld 22955  df-cn 23163  df-cnp 23164  df-tx 23498  df-hmeo 23691  df-xms 24257  df-ms 24258  df-tms 24259  df-ii 24819  df-htpy 24918  df-phtpy 24919  df-phtpc 24940  df-pco 24954
This theorem is referenced by:  pcophtb  24978  pi1grplem  24998  pi1xfr  25004  pi1xfrcnvlem  25005
  Copyright terms: Public domain W3C validator