MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elii2 Structured version   Visualization version   GIF version

Theorem elii2 24860
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
elii2 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ∈ ((1 / 2)[,]1))

Proof of Theorem elii2
StepHypRef Expression
1 elicc01 13368 . . . 4 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
21simp1bi 1145 . . 3 (𝑋 ∈ (0[,]1) → 𝑋 ∈ ℝ)
32adantr 480 . 2 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ∈ ℝ)
4 halfre 12341 . . . 4 (1 / 2) ∈ ℝ
5 letric 11220 . . . 4 ((𝑋 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑋 ≤ (1 / 2) ∨ (1 / 2) ≤ 𝑋))
62, 4, 5sylancl 586 . . 3 (𝑋 ∈ (0[,]1) → (𝑋 ≤ (1 / 2) ∨ (1 / 2) ≤ 𝑋))
76orcanai 1004 . 2 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → (1 / 2) ≤ 𝑋)
81simp3bi 1147 . . 3 (𝑋 ∈ (0[,]1) → 𝑋 ≤ 1)
98adantr 480 . 2 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ≤ 1)
10 1re 11119 . . 3 1 ∈ ℝ
114, 10elicc2i 13314 . 2 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
123, 7, 9, 11syl3anbrc 1344 1 ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ∈ ((1 / 2)[,]1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2113   class class class wbr 5093  (class class class)co 7352  cr 11012  0cc0 11013  1c1 11014  cle 11154   / cdiv 11781  2c2 12187  [,]cicc 13250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-icc 13254
This theorem is referenced by:  phtpycc  24918  copco  24946  pcohtpylem  24947  pcopt  24950  pcopt2  24951  pcoass  24952  pcorevlem  24954
  Copyright terms: Public domain W3C validator