![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elii2 | Structured version Visualization version GIF version |
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.) |
Ref | Expression |
---|---|
elii2 | ⊢ ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ∈ ((1 / 2)[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc01 13425 | . . . 4 ⊢ (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋 ∧ 𝑋 ≤ 1)) | |
2 | 1 | simp1bi 1145 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → 𝑋 ∈ ℝ) |
3 | 2 | adantr 481 | . 2 ⊢ ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ∈ ℝ) |
4 | halfre 12408 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
5 | letric 11296 | . . . 4 ⊢ ((𝑋 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑋 ≤ (1 / 2) ∨ (1 / 2) ≤ 𝑋)) | |
6 | 2, 4, 5 | sylancl 586 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → (𝑋 ≤ (1 / 2) ∨ (1 / 2) ≤ 𝑋)) |
7 | 6 | orcanai 1001 | . 2 ⊢ ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → (1 / 2) ≤ 𝑋) |
8 | 1 | simp3bi 1147 | . . 3 ⊢ (𝑋 ∈ (0[,]1) → 𝑋 ≤ 1) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ≤ 1) |
10 | 1re 11196 | . . 3 ⊢ 1 ∈ ℝ | |
11 | 4, 10 | elicc2i 13372 | . 2 ⊢ (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋 ∧ 𝑋 ≤ 1)) |
12 | 3, 7, 9, 11 | syl3anbrc 1343 | 1 ⊢ ((𝑋 ∈ (0[,]1) ∧ ¬ 𝑋 ≤ (1 / 2)) → 𝑋 ∈ ((1 / 2)[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 ∈ wcel 2106 class class class wbr 5141 (class class class)co 7393 ℝcr 11091 0cc0 11092 1c1 11093 ≤ cle 11231 / cdiv 11853 2c2 12249 [,]cicc 13309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-2 12257 df-icc 13313 |
This theorem is referenced by: phtpycc 24436 copco 24463 pcohtpylem 24464 pcopt 24467 pcopt2 24468 pcoass 24469 pcorevlem 24471 |
Copyright terms: Public domain | W3C validator |