| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcvgre | Structured version Visualization version GIF version | ||
| Description: All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019.) |
| Ref | Expression |
|---|---|
| esumcvgre.0 | ⊢ Ⅎ𝑘𝜑 |
| esumcvgre.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| esumcvgre.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| esumcvgre.3 | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| esumcvgre | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumcvgre.0 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfre1 3271 | . . . . . . 7 ⊢ Ⅎ𝑘∃𝑘 ∈ 𝐴 𝐵 = +∞ | |
| 3 | 1, 2 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑘(𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
| 4 | esumcvgre.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → 𝐴 ∈ 𝑉) |
| 6 | esumcvgre.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 7 | 6 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
| 9 | 3, 5, 7, 8 | esumpinfval 34109 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
| 10 | esumcvgre.3 | . . . . . . . . 9 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ) | |
| 11 | ltpnf 13141 | . . . . . . . . . 10 ⊢ (Σ*𝑘 ∈ 𝐴𝐵 ∈ ℝ → Σ*𝑘 ∈ 𝐴𝐵 < +∞) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 < +∞) |
| 13 | 10, 12 | gtned 11375 | . . . . . . . 8 ⊢ (𝜑 → +∞ ≠ Σ*𝑘 ∈ 𝐴𝐵) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → +∞ ≠ Σ*𝑘 ∈ 𝐴𝐵) |
| 15 | necom 2986 | . . . . . . . 8 ⊢ (+∞ ≠ Σ*𝑘 ∈ 𝐴𝐵 ↔ Σ*𝑘 ∈ 𝐴𝐵 ≠ +∞) | |
| 16 | 15 | imbi2i 336 | . . . . . . 7 ⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → +∞ ≠ Σ*𝑘 ∈ 𝐴𝐵) ↔ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → Σ*𝑘 ∈ 𝐴𝐵 ≠ +∞)) |
| 17 | 14, 16 | mpbi 230 | . . . . . 6 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → Σ*𝑘 ∈ 𝐴𝐵 ≠ +∞) |
| 18 | 17 | neneqd 2938 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = +∞) → ¬ Σ*𝑘 ∈ 𝐴𝐵 = +∞) |
| 19 | 9, 18 | pm2.65da 816 | . . . 4 ⊢ (𝜑 → ¬ ∃𝑘 ∈ 𝐴 𝐵 = +∞) |
| 20 | ralnex 3063 | . . . 4 ⊢ (∀𝑘 ∈ 𝐴 ¬ 𝐵 = +∞ ↔ ¬ ∃𝑘 ∈ 𝐴 𝐵 = +∞) | |
| 21 | 19, 20 | sylibr 234 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 ¬ 𝐵 = +∞) |
| 22 | 21 | r19.21bi 3238 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝐵 = +∞) |
| 23 | eliccxr 13457 | . . . . . 6 ⊢ (𝐵 ∈ (0[,]+∞) → 𝐵 ∈ ℝ*) | |
| 24 | xrge0neqmnf 13474 | . . . . . 6 ⊢ (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞) | |
| 25 | xrnemnf 13138 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) | |
| 26 | 25 | biimpi 216 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) |
| 27 | 23, 24, 26 | syl2anc 584 | . . . . 5 ⊢ (𝐵 ∈ (0[,]+∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) |
| 28 | 6, 27 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)) |
| 29 | 28 | orcomd 871 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 = +∞ ∨ 𝐵 ∈ ℝ)) |
| 30 | 29 | orcanai 1004 | . 2 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ) |
| 31 | 22, 30 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 +∞cpnf 11271 -∞cmnf 11272 ℝ*cxr 11273 < clt 11274 [,]cicc 13370 Σ*cesum 34063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-ordt 17520 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-ps 18581 df-tsr 18582 df-plusf 18622 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrng 20511 df-subrg 20535 df-abv 20774 df-lmod 20824 df-scaf 20825 df-sra 21136 df-rgmod 21137 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-tmd 24015 df-tgp 24016 df-tsms 24070 df-trg 24103 df-xms 24264 df-ms 24265 df-tms 24266 df-nm 24526 df-ngp 24527 df-nrg 24529 df-nlm 24530 df-ii 24826 df-cncf 24827 df-limc 25824 df-dv 25825 df-log 26522 df-esum 34064 |
| This theorem is referenced by: omssubadd 34337 |
| Copyright terms: Public domain | W3C validator |