Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvgre Structured version   Visualization version   GIF version

Theorem esumcvgre 34127
Description: All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019.)
Hypotheses
Ref Expression
esumcvgre.0 𝑘𝜑
esumcvgre.1 (𝜑𝐴𝑉)
esumcvgre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumcvgre.3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ)
Assertion
Ref Expression
esumcvgre ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem esumcvgre
StepHypRef Expression
1 esumcvgre.0 . . . . . . 7 𝑘𝜑
2 nfre1 3271 . . . . . . 7 𝑘𝑘𝐴 𝐵 = +∞
31, 2nfan 1899 . . . . . 6 𝑘(𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞)
4 esumcvgre.1 . . . . . . 7 (𝜑𝐴𝑉)
54adantr 480 . . . . . 6 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → 𝐴𝑉)
6 esumcvgre.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
76adantlr 715 . . . . . 6 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 simpr 484 . . . . . 6 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → ∃𝑘𝐴 𝐵 = +∞)
93, 5, 7, 8esumpinfval 34109 . . . . 5 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → Σ*𝑘𝐴𝐵 = +∞)
10 esumcvgre.3 . . . . . . . . 9 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ)
11 ltpnf 13141 . . . . . . . . . 10 *𝑘𝐴𝐵 ∈ ℝ → Σ*𝑘𝐴𝐵 < +∞)
1210, 11syl 17 . . . . . . . . 9 (𝜑 → Σ*𝑘𝐴𝐵 < +∞)
1310, 12gtned 11375 . . . . . . . 8 (𝜑 → +∞ ≠ Σ*𝑘𝐴𝐵)
1413adantr 480 . . . . . . 7 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → +∞ ≠ Σ*𝑘𝐴𝐵)
15 necom 2986 . . . . . . . 8 (+∞ ≠ Σ*𝑘𝐴𝐵 ↔ Σ*𝑘𝐴𝐵 ≠ +∞)
1615imbi2i 336 . . . . . . 7 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → +∞ ≠ Σ*𝑘𝐴𝐵) ↔ ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → Σ*𝑘𝐴𝐵 ≠ +∞))
1714, 16mpbi 230 . . . . . 6 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → Σ*𝑘𝐴𝐵 ≠ +∞)
1817neneqd 2938 . . . . 5 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → ¬ Σ*𝑘𝐴𝐵 = +∞)
199, 18pm2.65da 816 . . . 4 (𝜑 → ¬ ∃𝑘𝐴 𝐵 = +∞)
20 ralnex 3063 . . . 4 (∀𝑘𝐴 ¬ 𝐵 = +∞ ↔ ¬ ∃𝑘𝐴 𝐵 = +∞)
2119, 20sylibr 234 . . 3 (𝜑 → ∀𝑘𝐴 ¬ 𝐵 = +∞)
2221r19.21bi 3238 . 2 ((𝜑𝑘𝐴) → ¬ 𝐵 = +∞)
23 eliccxr 13457 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 𝐵 ∈ ℝ*)
24 xrge0neqmnf 13474 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞)
25 xrnemnf 13138 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
2625biimpi 216 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
2723, 24, 26syl2anc 584 . . . . 5 (𝐵 ∈ (0[,]+∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
286, 27syl 17 . . . 4 ((𝜑𝑘𝐴) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
2928orcomd 871 . . 3 ((𝜑𝑘𝐴) → (𝐵 = +∞ ∨ 𝐵 ∈ ℝ))
3029orcanai 1004 . 2 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ)
3122, 30mpdan 687 1 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wnf 1783  wcel 2109  wne 2933  wral 3052  wrex 3061   class class class wbr 5124  (class class class)co 7410  cr 11133  0cc0 11134  +∞cpnf 11271  -∞cmnf 11272  *cxr 11273   < clt 11274  [,]cicc 13370  Σ*cesum 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-ordt 17520  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-ps 18581  df-tsr 18582  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-abv 20774  df-lmod 20824  df-scaf 20825  df-sra 21136  df-rgmod 21137  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tmd 24015  df-tgp 24016  df-tsms 24070  df-trg 24103  df-xms 24264  df-ms 24265  df-tms 24266  df-nm 24526  df-ngp 24527  df-nrg 24529  df-nlm 24530  df-ii 24826  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-esum 34064
This theorem is referenced by:  omssubadd  34337
  Copyright terms: Public domain W3C validator