Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvgre Structured version   Visualization version   GIF version

Theorem esumcvgre 32730
Description: All terms of a converging extended sum shall be finite. (Contributed by Thierry Arnoux, 23-Sep-2019.)
Hypotheses
Ref Expression
esumcvgre.0 𝑘𝜑
esumcvgre.1 (𝜑𝐴𝑉)
esumcvgre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumcvgre.3 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ)
Assertion
Ref Expression
esumcvgre ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem esumcvgre
StepHypRef Expression
1 esumcvgre.0 . . . . . . 7 𝑘𝜑
2 nfre1 3271 . . . . . . 7 𝑘𝑘𝐴 𝐵 = +∞
31, 2nfan 1903 . . . . . 6 𝑘(𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞)
4 esumcvgre.1 . . . . . . 7 (𝜑𝐴𝑉)
54adantr 482 . . . . . 6 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → 𝐴𝑉)
6 esumcvgre.2 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
76adantlr 714 . . . . . 6 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
8 simpr 486 . . . . . 6 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → ∃𝑘𝐴 𝐵 = +∞)
93, 5, 7, 8esumpinfval 32712 . . . . 5 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → Σ*𝑘𝐴𝐵 = +∞)
10 esumcvgre.3 . . . . . . . . 9 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ℝ)
11 ltpnf 13048 . . . . . . . . . 10 *𝑘𝐴𝐵 ∈ ℝ → Σ*𝑘𝐴𝐵 < +∞)
1210, 11syl 17 . . . . . . . . 9 (𝜑 → Σ*𝑘𝐴𝐵 < +∞)
1310, 12gtned 11297 . . . . . . . 8 (𝜑 → +∞ ≠ Σ*𝑘𝐴𝐵)
1413adantr 482 . . . . . . 7 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → +∞ ≠ Σ*𝑘𝐴𝐵)
15 necom 2998 . . . . . . . 8 (+∞ ≠ Σ*𝑘𝐴𝐵 ↔ Σ*𝑘𝐴𝐵 ≠ +∞)
1615imbi2i 336 . . . . . . 7 (((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → +∞ ≠ Σ*𝑘𝐴𝐵) ↔ ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → Σ*𝑘𝐴𝐵 ≠ +∞))
1714, 16mpbi 229 . . . . . 6 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → Σ*𝑘𝐴𝐵 ≠ +∞)
1817neneqd 2949 . . . . 5 ((𝜑 ∧ ∃𝑘𝐴 𝐵 = +∞) → ¬ Σ*𝑘𝐴𝐵 = +∞)
199, 18pm2.65da 816 . . . 4 (𝜑 → ¬ ∃𝑘𝐴 𝐵 = +∞)
20 ralnex 3076 . . . 4 (∀𝑘𝐴 ¬ 𝐵 = +∞ ↔ ¬ ∃𝑘𝐴 𝐵 = +∞)
2119, 20sylibr 233 . . 3 (𝜑 → ∀𝑘𝐴 ¬ 𝐵 = +∞)
2221r19.21bi 3237 . 2 ((𝜑𝑘𝐴) → ¬ 𝐵 = +∞)
23 eliccxr 13359 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 𝐵 ∈ ℝ*)
24 xrge0neqmnf 13376 . . . . . 6 (𝐵 ∈ (0[,]+∞) → 𝐵 ≠ -∞)
25 xrnemnf 13045 . . . . . . 7 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
2625biimpi 215 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
2723, 24, 26syl2anc 585 . . . . 5 (𝐵 ∈ (0[,]+∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
286, 27syl 17 . . . 4 ((𝜑𝑘𝐴) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
2928orcomd 870 . . 3 ((𝜑𝑘𝐴) → (𝐵 = +∞ ∨ 𝐵 ∈ ℝ))
3029orcanai 1002 . 2 (((𝜑𝑘𝐴) ∧ ¬ 𝐵 = +∞) → 𝐵 ∈ ℝ)
3122, 30mpdan 686 1 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 846   = wceq 1542  wnf 1786  wcel 2107  wne 2944  wral 3065  wrex 3074   class class class wbr 5110  (class class class)co 7362  cr 11057  0cc0 11058  +∞cpnf 11193  -∞cmnf 11194  *cxr 11195   < clt 11196  [,]cicc 13274  Σ*cesum 32666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-xnn0 12493  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-sum 15578  df-ef 15957  df-sin 15959  df-cos 15960  df-pi 15962  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-rest 17311  df-topn 17312  df-0g 17330  df-gsum 17331  df-topgen 17332  df-pt 17333  df-prds 17336  df-ordt 17390  df-xrs 17391  df-qtop 17396  df-imas 17397  df-xps 17399  df-mre 17473  df-mrc 17474  df-acs 17476  df-ps 18462  df-tsr 18463  df-plusf 18503  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-submnd 18609  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mulg 18880  df-subg 18932  df-cntz 19104  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-cring 19974  df-subrg 20236  df-abv 20292  df-lmod 20340  df-scaf 20341  df-sra 20649  df-rgmod 20650  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-tmd 23439  df-tgp 23440  df-tsms 23494  df-trg 23527  df-xms 23689  df-ms 23690  df-tms 23691  df-nm 23954  df-ngp 23955  df-nrg 23957  df-nlm 23958  df-ii 24256  df-cncf 24257  df-limc 25246  df-dv 25247  df-log 25928  df-esum 32667
This theorem is referenced by:  omssubadd  32940
  Copyright terms: Public domain W3C validator