MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0nre Structured version   Visualization version   GIF version

Theorem xrge0nre 12656
Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
xrge0nre ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞)

Proof of Theorem xrge0nre
StepHypRef Expression
1 eliccxr 12638 . . 3 (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*)
2 xrge0neqmnf 12655 . . 3 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
3 xrnemnf 12328 . . . 4 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
43biimpi 208 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
51, 2, 4syl2anc 576 . 2 (𝐴 ∈ (0[,]+∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
65orcanai 986 1 ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 834   = wceq 1508  wcel 2051  wne 2962  (class class class)co 6975  cr 10333  0cc0 10334  +∞cpnf 10470  -∞cmnf 10471  *cxr 10472  [,]cicc 12556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-addrcl 10395  ax-rnegex 10405  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-po 5323  df-so 5324  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-ov 6978  df-oprab 6979  df-mpo 6980  df-1st 7500  df-2nd 7501  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-icc 12560
This theorem is referenced by:  voliune  31166  volfiniune  31167  omssubadd  31236  ismbl3  41732
  Copyright terms: Public domain W3C validator