![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0nre | Structured version Visualization version GIF version |
Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
Ref | Expression |
---|---|
xrge0nre | ⊢ ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxr 13408 | . . 3 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
2 | xrge0neqmnf 13425 | . . 3 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) | |
3 | xrnemnf 13093 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
4 | 3 | biimpi 215 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
5 | 1, 2, 4 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
6 | 5 | orcanai 999 | 1 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 (class class class)co 7401 ℝcr 11104 0cc0 11105 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 [,]cicc 13323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-addrcl 11166 ax-rnegex 11176 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-icc 13327 |
This theorem is referenced by: voliune 33682 volfiniune 33683 omssubadd 33754 ismbl3 45153 |
Copyright terms: Public domain | W3C validator |