![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0nre | Structured version Visualization version GIF version |
Description: An extended real which is not a real is plus infinity. (Contributed by Thierry Arnoux, 16-Oct-2017.) |
Ref | Expression |
---|---|
xrge0nre | ⊢ ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxr 13497 | . . 3 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
2 | xrge0neqmnf 13514 | . . 3 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) | |
3 | xrnemnf 13182 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
4 | 3 | biimpi 216 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
5 | 1, 2, 4 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
6 | 5 | orcanai 1003 | 1 ⊢ ((𝐴 ∈ (0[,]+∞) ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 = +∞) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7450 ℝcr 11185 0cc0 11186 +∞cpnf 11323 -∞cmnf 11324 ℝ*cxr 11325 [,]cicc 13412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-addrcl 11247 ax-rnegex 11257 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-icc 13416 |
This theorem is referenced by: voliune 34195 volfiniune 34196 omssubadd 34267 ismbl3 45909 |
Copyright terms: Public domain | W3C validator |